精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=e|x|,则$\int_{-2}^4{f(x)}dx$(  )
A.e4+e2-2B.e4-e2C.e4-e2+2D.e4-e2-2

分析 首先将定积分写成两个定积分的和的形式,然后分别计算.

解答 解:由已知得到$\int_{-2}^4{f(x)}dx$=${∫}_{-2}^{0}{{e}^{-}}^{x}dx+{∫}_{0}^{4}{e}^{x}dx$=$-{e}^{-x}{|}_{-2}^{0}+{e}^{x}{|}_{0}^{4}$=-1+e2+e4-1=e4+e2-2,
故选A.

点评 本题考查了定积分的计算;利用可加性写成定积分的和的形式是关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.(x-2y+3z)7在展开式中,x2y3z2项的系数为-15120.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知不等式x2-5ax+b>0的解集为{x|x>4或x>1}
(1)求实数a,b的值;
(2)若0<x<1,f(x)=$\frac{a}{x}+\frac{b}{1-x}$,求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若$\overrightarrow{a}$=(2,-1),$\overrightarrow{b}$=(3,4),则$\overrightarrow{a}$与$\overrightarrow{b}$夹角的余弦值(  )
A.$-\frac{{2\sqrt{5}}}{25}$B.$\frac{{2\sqrt{5}}}{25}$C.$2\sqrt{5}$D.$\frac{{\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设a<0,角α的终边经过点P(3a,-4a),则sinα+2cosα的值等于(  )
A.$\frac{2}{5}$B.$-\frac{2}{5}$C.$\frac{1}{5}$D.$-\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数$f(x)=|\overrightarrow{MP}-x\overrightarrow{MN}|(x∈R)$,其中MN是半径为4的圆O的一条弦,P为单位圆O上的点,设函数f(x)的最小值为t,当点P在单位圆上运动时,t的最大值为3,则线段MN的长度为(  )
A.$4\sqrt{3}$B.$2\sqrt{3}$C.$\sqrt{3}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.为了得到函数y=9×3x+5的图象,可以把函数y=3x的图象(  )
A.向左平移9个单位长度,再向上平移5个单位长度
B.向右平移9个单位长度,再向下平移5个单位长度
C.向左平移2个单位长度,再向上平移5个单位长度
D.向右平移2个单位长度,再向下平移5个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=e|x|+x2,若实数a满足f(log2a)≤f(1),则a的取值范围是(  )
A.(0,1]B.[$\frac{1}{2}$,2]C.(0,2]D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设函数$f(x)=\frac{x}{2x-1}$,则$f(\frac{1}{4011})+f(\frac{2}{4011})+f(\frac{3}{4011})+…+f(\frac{4010}{4011})$=2005.

查看答案和解析>>

同步练习册答案