精英家教网 > 高中数学 > 题目详情
4.在△ABC中,角A,B,C的对边分别为a,b,c,向量$\overrightarrow{m}$=(cosC,sin$\frac{C}{2}$),向量$\overrightarrow{n}$=(sin$\frac{C}{2}$,cosC),且$\overrightarrow{m}∥\overrightarrow{n}$.
(1)求角C的大小;
(2)若a2=2b2+c2,求tanA的值.

分析 (1)先利用向量平行的充要条件,得三角等式,即可求得角C;
(2)先利用余弦定理化简已知等式,再利用正弦定理将等式中的边化为角,并利用(1)和三角变换公式化简,最后利用同角三角函数基本关系式即可得所求

解答 解:(1)∵向量$\overrightarrow{m}$=(cosC,sin$\frac{C}{2}$),向量$\overrightarrow{n}$=(sin$\frac{C}{2}$,cosC),且$\overrightarrow{m}∥\overrightarrow{n}$,
∴cos2C-sin2$\frac{C}{2}$=0
∵C∈(0,π)
∴C=$\frac{π}{3}$;
(2)由余弦定理,a2=2b2+c2=b2+c2-2bccosA,
∴b=-2ccosA,
正弦定理得sinB=-2sinCcosA,C=$\frac{π}{3}$
∴sin($\frac{2π}{3}$-A)=-$\sqrt{3}$cosA,
即$\frac{\sqrt{3}}{2}$cosA+$\frac{1}{2}$sinA+$\sqrt{3}$cosA=0,
∴$\frac{3\sqrt{3}}{2}$cosA=-$\frac{1}{2}$sinA
∴tanA=-3$\sqrt{3}$.

点评 本题主要考查了三角变换公式在三角化简和求值中的应用,向量平行的充要条件,正弦定理和余弦定理的综合应用,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.某赛季甲,乙两名篮球运动员每场比赛得分可用茎叶图表示如下:
(1)求甲运动员成绩的中位数;
(2)估计乙运动员在一场比赛中得分落在区间[10,40]内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图为函数f(x)=Msin(ωx+φ)(M>0,ω>0,0≤φ≤π)的部分图象,若点A、B分别为函数f(x)的最高点与最低点,且|AB|=5,那么f(-1)=(  )
A.2B.$\sqrt{3}$C.-$\sqrt{3}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知P=$\frac{1}{{a}^{2}+a+1}$,Q=a2-a+1,则P、Q的大小关系为(  )
A.P>QB.P<QC.P≤QD.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数y=f(x)是奇函数,根据y=f(x)在[0,5]上的图象作出y=f(x)在[-5,0)上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设?x∈[-1,1],不等式x$\sqrt{3a-{x}^{2}}$≤$\frac{1}{2}$都成立,则实数a的值为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,椭圆C1:x2+$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的左、右顶点分别为A,B,点P为双曲线C2:x2-$\frac{{y}^{2}}{{b}^{2}}$=1在第一象限内的图象上一点,直线AP,BP与椭圆C1分别交于C,D两点.C是AP的中点.
(1)求点P,C的横坐标;
(2)若直线CD过椭圆C1的右焦点,求椭圆C1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求函数f(x)=$\frac{4}{x-2}$(x∈[3,6])的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设f(x)=(x+a)lnx-ax+1
(1)a=0时,求f(x)的单调区间;
(2)若a≥1,对任意的x∈[$\frac{1}{2}$,1],求f(x)的最大值.

查看答案和解析>>

同步练习册答案