精英家教网 > 高中数学 > 题目详情

【题目】已知中心在原点的双曲线C的右焦点为(2,0),右顶点为( ,0)
(1)求双曲线C的方程;
(2)若直线l:y=kx+ 与双曲线C恒有两个不同的交点A和B,且 >2(其中O为原点).求k的取值范围.

【答案】
(1)解:设双曲线方程为 (a>0,b>0).

由已知得

故双曲线C的方程为


(2)解:将

由直线l与双曲线交于不同的两点得

.①

设A(xA,yA),B(xB,yB),

=

于是 .②

由①、②得

故k的取值范围为


【解析】(1)由双曲线的右焦点与右顶点易知其标准方程中的c、a,进而求得b,则双曲线标准方程即得;(2)首先把直线方程与双曲线方程联立方程组,然后消y得x的方程,由于直线与双曲线恒有两个不同的交点,则关于x的方程必为一元二次方程且判别式大于零,由此求出k的一个取值范围;再根据一元二次方程根与系数的关系用k的代数式表示出xA+xB , xAxB , 进而把条件 >2转化为k的不等式,又求出k的一个取值范围,最后求k的交集即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 ,关于x的方程f2(x)+a|f(x)|+b=0(a,b∈R)恰有6个不同实数解,则a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内生产该品牌服装x千件并全部销售完,每千件的销售收入为R(x)万元,且R(x)=
(1)求年利润W(万元)关于年产量x(千件)的函数解析式;
(2)当年产量为多少千件时,该公司在这一品牌服装的生产中所获得的年利润最大,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= (其中常数a>0,且a≠1).
(1)当a=10时,解关于x的方程f(x)=m(其中常数m>2 );
(2)若函数f(x)在(﹣∞,2]上的最小值是一个与a无关的常数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
(1)作出函数f(x)的图象;
(2)直接写出函数f(x)的值域;
(3)求 f[f(﹣1)]的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={y|y=x2﹣2x﹣3,x∈R},B={x|log2x<﹣1},C={k|函数f(x)= 在(0,+∞)上是增函数}.
(1)求A,B,C;
(2)求A∩C,(UB)∪C.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fk(x)=2x﹣(k﹣1)2﹣x(k∈Z),x∈R,g(x)=
(1)若f2(x)=2,求x的值.
(2)判断并证明函数y=g(x)的单调性;
(3)若函数y=f0(2x)+2mf2(x)在x∈[1,+∞)上有零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)的左、右焦点分别为F1 , F2 , 离心率为 .以原点为圆心,椭圆的短轴长为直径的圆与直线x﹣y+ =0相切.
(1)求椭圆C的方程;
(2)如图,若斜率为k(k≠0)的直线l与x轴、椭圆C顺次相交于A,M,N(A点在椭圆右顶点的右侧),且∠NF2F1=∠MF2A.求证直线l恒过定点,并求出斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=xlnx,g(x)=x3+ax2﹣x+2 (Ⅰ)如果函数g(x)的单调递减区间为(﹣ ,1),求函数g(x)的解析式;
(Ⅱ)对一切的x∈(0,+∞),2f(x)≤g′(x)+2恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案