图3
A. B. C. D.
科目:高中数学 来源: 题型:
S1 | S2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
3 |
3 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(04年上海卷)(16分)
如图,P-ABC是底面边长为1的正三棱锥,D、E、F分别为棱长PA、PB、PC上的点, 截面DEF∥底面ABC, 且棱台DEF-ABC与棱锥P-ABC的棱长和相等.(棱长和是指多面体中所有棱的长度之和)
(1) 证明:P-ABC为正四面体;
(2) 若PD=PA, 求二面角D-BC-A的大小;(结果用反三角函数值表示)
(3) 设棱台DEF-ABC的体积为V, 是否存在体积为V且各棱长均相等的直
平行六面体,使得它与棱台DEF-ABC有相同的棱长和? 若存在,请具体构造
出这样的一个直平行六面体,并给出证明;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源:2014届广东实验中学高二上学期期中理科数学试卷(解析版) 题型:解答题
(本小题满分14分)
如图,P-ABC是底面边长为1的正三棱锥,D、E、F分别为棱长PA、PB、PC上的点, 截面DEF∥底面ABC, 且棱台DEF-ABC与棱锥P-ABC的棱长和相等.(棱长和是指多面体中所有棱的长度之和)
(1)求证:P-ABC为正四面体;
(2)棱PA上是否存在一点M,使得BM与面ABC所成的角为45°?若存在,求出点M的位置;若不存在,请说明理由。
(3)设棱台DEF-ABC的体积为V=, 是否存在体积为V且各棱长均相等的平行六面体,使得它与棱台DEF-ABC有相同的棱长和,并且该平行六面体的一条侧棱与底面两条棱所成的角均为60°? 若存在,请具体构造出这样的一个平行六面体,并给出证明;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
如图,P-ABC是底面边长为1的正三棱锥,D、E、F分别为棱长PA、PB、PC上的点, 截面DEF∥底面ABC, 且棱台DEF-ABC与棱锥P-ABC的棱长和相等.(棱长和是指多面体中所有棱的长度之和)
(1)证明:P-ABC为正四面体;
(2)若PD=PA, 求二面角D-BC-A的大小;(结果用反三角函数值表示)
(3)设棱台DEF-ABC的体积为V, 是否存在体积为V且各棱长均相等的直平行六面体,
使得它与棱台DEF-ABC有相同的棱长和? 若存在,请具体构造出这样的一个直平行六面体,并给出证明;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com