精英家教网 > 高中数学 > 题目详情
如图3,△ABC的底边BC=a,高ADh,矩形EFGH内接于△ABC,其中EF分别在边ACAB上,GH都在BC上,且EF=2FG,则矩形EFGH的周长是(  )

图3

A.                    B.                 C.                    D.

思路解析:由题目条件中的EF=2FG,要想求出矩形的周长,必须求出FG与高AD h的关系.由EFBC得△AFE∽△ABC,则EF与高h即可联系上.?

FG x,∵EF=2FG,?

EF=2x.?

EFBC,∴△AFE∽△ABC.?

ADBC,设ADEFM,?

AMEF.?

=,即=.?

=.解之,得.?

∴矩形EFGH的周长为.

答案:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,△ABC为一个等腰三角形形状的空地,腰CA的长为3(百米),底AB的长为4(百米).现决定在空地内筑一条笔直的小路EF(宽度不计),将该空地分成一个四边形和一个三角形,设分成的四边形和三角形的周长相等、面积分别为S1和S2
(1)若小路一端E为AC的中点,求此时小路的长度;
(2)求
S1S2
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网某自来水公司准备修建一条饮水渠,其横截面为如图所示的等腰梯形,∠ABC=120°,
按照设计要求,其横截面面积为6
3
平方米,为了使建造的水渠用料最省,横截面的周
长(梯形的底BC与两腰长的和)必须最小,设水渠深h米.
(Ⅰ)当h为多少米时,用料最省?
(Ⅱ)如果水渠的深度设计在[3,2
3
]
的范围内,求横截面周长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(04年上海卷)(16分)

如图,P-ABC是底面边长为1的正三棱锥,D、E、F分别为棱长PA、PB、PC上的点, 截面DEF∥底面ABC, 且棱台DEF-ABC与棱锥P-ABC的棱长和相等.(棱长和是指多面体中所有棱的长度之和)

(1)     证明:P-ABC为正四面体;

(2)     若PD=PA, 求二面角D-BC-A的大小;(结果用反三角函数值表示)

(3)     设棱台DEF-ABC的体积为V, 是否存在体积为V且各棱长均相等的直

平行六面体,使得它与棱台DEF-ABC有相同的棱长和? 若存在,请具体构造

出这样的一个直平行六面体,并给出证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2014届广东实验中学高二上学期期中理科数学试卷(解析版) 题型:解答题

(本小题满分14分)

如图,P-ABC是底面边长为1的正三棱锥,D、E、F分别为棱长PA、PB、PC上的点, 截面DEF∥底面ABC, 且棱台DEF-ABC与棱锥P-ABC的棱长和相等.(棱长和是指多面体中所有棱的长度之和)

(1)求证:P-ABC为正四面体;

(2)棱PA上是否存在一点M,使得BM与面ABC所成的角为45°?若存在,求出点M的位置;若不存在,请说明理由。

(3)设棱台DEF-ABC的体积为V=, 是否存在体积为V且各棱长均相等的平行六面体,使得它与棱台DEF-ABC有相同的棱长和,并且该平行六面体的一条侧棱与底面两条棱所成的角均为60°? 若存在,请具体构造出这样的一个平行六面体,并给出证明;若不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,P-ABC是底面边长为1的正三棱锥,D、E、F分别为棱长PA、PB、PC上的点, 截面DEF∥底面ABC, 且棱台DEF-ABC与棱锥P-ABC的棱长和相等.(棱长和是指多面体中所有棱的长度之和)

(1)证明:P-ABC为正四面体;

(2)若PD=PA, 求二面角D-BC-A的大小;(结果用反三角函数值表示)

(3)设棱台DEF-ABC的体积为V, 是否存在体积为V且各棱长均相等的直平行六面体,

使得它与棱台DEF-ABC有相同的棱长和? 若存在,请具体构造出这样的一个直平行六面体,并给出证明;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案