精英家教网 > 高中数学 > 题目详情

【题目】设向量

(1)垂直,求的值.

(2)求的最大值.

【答案】12.(24

【解析】

1)根据向量垂直得出数量积为0,列出方程,使用三角函数恒等变换化简;

2)求出(2,利用三角函数的性质得出(2的最大值;

解:(1sinβ2cosβ4cosβ+8sinβ),

),则0,即4cosαsinβ2cosβ+sinα4cosβ+8sinβ)=0

4cosαsinβ+4sinαcosβ8cosαcosβ+8sinαsinβ0

sinα+β)=2cosα+β),

tanα+β)=2

2sinβ+cosβ4cosβ4sinβ),

∴(2=(sinβ+cosβ2+4cosβ4sinβ21730sinβcosβ1715sin2β

∴当sin2β=﹣1时,(2取得最大值32

||的最大值是4

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在一次摸取奖票的活动中,已知中奖的概率为,若票仓中有足够多的票则下列说法正确的是  

A. 若只摸取一张票,则中奖的概率为

B. 若只摸取一张票,则中奖的概率为

C. 100个人按先后顺序每人摸取1张票则一定有2人中奖

D. 100个人按先后顺序每人摸取1张票,则第一个摸票的人中奖概率最大

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,动圆C经过点,且被y轴截得的弦长为2p,记动圆圆心C的轨迹为E

求轨迹E的方程;

求证:在轨迹E上存在点AB,使得为坐标原点是以A为直角顶点的等腰直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处取得极小值.

(1)求实数的值;

(2)设,其导函数为,若的图象交轴于两点,设线段的中点为,试问是否为的根?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】网络直播是一种新兴的网络社交方式,网络直播平台也成为了一种崭新的社交媒体.很多人选择在快手、抖音等网络直播平台上分享自己的生活点滴.2020年的寒假,注定不凡.因为新冠病毒疫情的影响,开学延迟了,老师们停课不停教,在网络上直播授课;同学们停课不停学,在家上网课.某网络社交平台为了了解网络直播在大众中的熟知度,对15-65岁的人群随机抽样调查,调查的问题是“你直播过吗?”其中,回答“直播过”的共有个人.把这个人按照年龄分成5组:第1,第2,第3,第4,第5,然后绘制成如图所示的频率分布直方图.其中,第一组的频数为20.

1)求的值,并根据频率分布直方图估计这组数据的众数;

2)从第134组中用分层抽样的方法抽取6人,求第134组抽取的人数;

3)在(2)抽取的6人中再随机抽取2人,求所抽取的2人来自同一个组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定点,直线相交于点,且它们的斜率之积为,记动点的轨迹为曲线.

Ⅰ)求曲线的方程;

Ⅱ)过点的直线与曲线交于两点,是否存在定点,使得直线斜率之积为定值,若存在求出坐标;若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若不等式上恒成立,求a的取值范围;

2)若函数恰好有三个零点,求b的值及该函数的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是一个非空集合, 是定义在上的一个运算.如果同时满足下述四个条件:

(1)对于,都有

(2)对于,都有

(3)对于,使得

(4)对于,使得(注:“”同(iii)中的“”).

则称关于运算构成一个群.现给出下列集合和运算:

是整数集合, 为加法;②是奇数集合, 为乘法;③是平面向量集合, 为数量积运算;④是非零复数集合, 为乘法. 其中关于运算构成群的序号是___________(将你认为正确的序号都写上).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)当时,求曲线在点处的切线方程.

)如果函数上单调递减,求的取值范围.

)当时,讨论函数零点的个数.

查看答案和解析>>

同步练习册答案