精英家教网 > 高中数学 > 题目详情

【题目】双曲线的左右顶点分别为,动直线垂直的实轴,且交于不同的两点,直线与直线的交点为.

(1)求点的轨迹的方程;

(2)过点的两条互相垂直的弦,证明:过两弦中点的直线恒过定点.

【答案】(1);(2)证明见解析.

【解析】

(1) 再求出直线的方程为直线的方程为, 再消去即得的轨迹的方程;

(2)先求出D的中点的中点, 再证明过两弦中点的直线恒过定点.

(1)因为

①,

因为动直线交双曲线于不同的两点,所以

因为直线的方程为②,

直线的方程为③,

③得

把①代入上式得,化简得

所以点的轨迹的方程为.

(2)依题意得直线与直线斜率均存在且不为0,

设直线的方程为,则直线的方程为

联立

,设

所以的中点

同理的中点

所以直线的斜率为

所以直线的方程为

整理得

所以直线恒过定点,即过两弦中点的直线恒过定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求证:若,则

(2)当时,试讨论函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.

(Ⅰ)求证:D1EA1D;

)在棱AB上是否存在点E使得AD1与平面D1EC成的角为?若存在,求出AE的长,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于无穷数列,若正整数,使得当时,有,则称不减数列”.

(1)均为正整数,且,甲:不减数列,乙:不减数列”.试判断命题:“甲是乙的充分条件的真假,并说明理由;

(2)已知函数与函数的图象关于直线对称,数列满足,如果不减数列,试求的最小值;

(3)对于(2)中的,设,且.是否存在实数使得不减数列”?若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下图是古希腊数学家阿基米德用平衡法求球的体积所用的图形.此图由正方形、半径为的圆及等腰直角三角形构成,其中圆内切于正方形,等腰三角形的直角顶点与的中点重合,斜边在直线上.已知的中点,现将该图形绕直线旋转一周,则阴影部分旋转后形成的几何体积为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,分别为的中点,则下列关系:

平面

平面

正确的编号为___________________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】血药浓度(Serum Drug Concentration)是指药物吸收后在血浆内的总浓度(单位:mg/ml),通常用血药浓度来研究药物的作用强度.下图为服用同等剂量的三种新药后血药浓度的变化情况,其中点的横坐标表示服用第种药后血药浓度达到峰值时所用的时间,其它点的横坐标分别表示服用三种新药后血药浓度第二次达到峰值一半时所用的时间(单位:h),点的纵坐标表示第种药的血药浓度的峰值.(

①记为服用第种药后达到血药浓度峰值时,血药浓度提高的平均速度,则中最大的是_______

②记为服用第种药后血药浓度从峰值降到峰值的一半所用的时间,则中最大的是_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过抛物线的焦点,斜率为的直线交抛物线于两点,且.

(1)求该抛物线的方程;

(2) 为坐标原点,为抛物线上一点,若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列结论正确的是( ).

A.互为共轭复数的充分不必要条件

B.如图,在复平面内,若复数对应的向量分别是,则复数对应的点的坐标为

C.若函数恰在上单调递减,则实数的值为4

D.函数在点处的切线方程为

查看答案和解析>>

同步练习册答案