精英家教网 > 高中数学 > 题目详情
已知数列{an}的通项公式是an=2n-1,数列{bn}的通项公式是bn=3n,令集合A={a1,a2,…,an,…},B={b1,b2,…,bn,…},n∈N*.将集合A∪B中的元素按从小到大的顺序排列构成的数列记为{cn}.则数列{cn}的前28项的和S28=
 
分析:由题意可知两集合中无公共项,{cn}的前28项由{an}中的前7项及{bn}中的前21项构成.进而根据等比和等差数列的求和公式即可得到答案.
解答:解:两集合中无公共项,{cn}的前28项由{an}中的前7项及{bn}中的前21项构成.
所以S28=
1-27
1-2
+
21(3+63)
2
=820
点评:本题主要考查了数列的求和问题.熟练掌握等比和等差数列的求和公式,是正确解题的前提.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}的通项为an=2n-1,Sn为数列{an}的前n项和,令bn=
1
Sn+n
,则数列{bn}的前n项和的取值范围为(  )
A、[
1
2
,1)
B、(
1
2
,1)
C、[
1
2
3
4
)
D、[
2
3
,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的通项公式是an=
an
bn+1
,其中a、b均为正常数,那么数列{an}的单调性为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2003•东城区二模)已知数列{an}的通项公式是 an=
na
(n+1)b
,其中a、b均为正常数,那么 an与 an+1的大小关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的通项公式为an=2n-5,则|a1|+|a2|+…+|a10|=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的通项公式为an=
1
n+1
+
n
求它的前n项的和.

查看答案和解析>>

同步练习册答案