精英家教网 > 高中数学 > 题目详情

【题目】二次函数f(x)满足f(3﹣x)=f(3+x),又f(x)是[0,3]上的增函数,且f(a)≥f(0),那么实数a的取值范围是

【答案】[0,6]
【解析】解:∵f(x)满足f(3﹣x)=f(3+x),

∴对称轴是x=3,

又f(x)在[0,3]上是增函数,

则抛物线的开口向下,且f(x)在[3,6]上是减函数,

∵f(a)≥f(0),则f(a)≥f(6),

所以根据二次函数的单调性并结合图象(示意图)可得:

0≤a≤6.

所以答案是:[0,6].

【考点精析】利用二次函数的性质对题目进行判断即可得到答案,需要熟知增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=log2(|x﹣1|+|x+2|﹣a).
(Ⅰ)当a=7时,求函数f(x)的定义域;
(Ⅱ)若关于x的不等式f(x)≥3的解集是R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在等差数列{an}中,Sn为其前n项和,a2=2,S5=15;等比数列{bn}的前n项和
( I)求数列{an},{bn}的通项公式;
( II)设cn=anbn , 求数列{cn}的前n项和Cn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,椭圆E: =1(a>b>0)的左顶点为A(﹣2,0),离心率为 ,过点A的直线l与椭圆E交于另一点B,点C为y轴上的一点.

(1)求椭圆E的标准方程;
(2)若△ABC是以点C为直角顶点的等腰直角三角形,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC所在的平面内,点P0、P满足 = ,且对于任意实数λ,恒有 ,则(
A.∠ABC=90°
B.∠BAC=90°
C.AC=BC
D.AB=AC

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(a2﹣3a+3)ax是指数函数,
(1)求f(x)的表达式;
(2)判断F(x)=f(x)﹣f(﹣x)的奇偶性,并加以证明
(3)解不等式:loga(1﹣x)>loga(x+2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的内角A,B,C所对边分别为a,b,c.向量 =(a, b), =(sinB,﹣cosA),且
(1)求A的大小;
(2)若| |= ,求cosC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,既是偶函数,又在(0,+∞)上单调递增的是( )
A.y=ln|x﹣1|
B.y=x2﹣|x|
C.
D.y=ex+e﹣x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 是双曲线 的右焦点,过点 的一条渐近线的垂线,垂足为 ,线段 相交于点 ,记点 的两条渐近线的距离之积为 ,若 ,则该双曲线的离心率是( )
A.
B.2
C. 3
D.4

查看答案和解析>>

同步练习册答案