精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的中心在原点,焦点在轴上,离心率为,且经过点,直线交椭圆于不同的两点A,B.

(1)求椭圆的方程;

(2)求的取值范围.

【答案】(1);(2)

【解析】

(1)由椭圆离心率可得a,b的关系,依题意设椭圆方程为:,把点(4,1)代入求得b值,则椭圆方程可求;

(2)联立直线方程与椭圆方程,化为关于x的一元二次方程,利用判别式大于0列式求得实数m的取值范围.

(1)由椭圆的中心在原点,焦点在轴上,离心率为,得

,∴a2=4b2,依题意设椭圆方程为:

把点(4,1)代入得b2=5,∴椭圆方程为

(2)因为直线交椭圆于不同的两点A,B.

联立,得5x2+8mx+4m2﹣20=0.

由△=64m2﹣20(4m2﹣20)=400﹣16m2>0,解得﹣5<m<5.

∴m的取值范围是(﹣5,5).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数为偶函数,且函数图象的两相邻对称轴间的距离为.

(1)求的值;

(2)求函数的对称轴方程;

(3)当时,方程有两个不同的实根,求m的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在R上的奇函数

(1)求实数的值

(2)如果对任意,不等式恒成立,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设曲线y=xn+1(n∈N*)在点(1,1)处的切线与x轴的交点的横坐标为xn,令an=lgxna1+a2+…+a99的值为(  )

A. 1 B. 2 C. -2 D. -1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中正确的个数为______.

1.是一个区间,若对任意,当时,都有,则上单调递增;

2.函数在定义域上是单调递减函数;

3.函数在定义域上是单调递增函数;

4.集合相等.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下茎叶图记录了甲、乙两组各四名同学的植树棵数。乙组记录中有一个数据模糊,无法确认,在图中经X表示。

1)如果X=8,求乙组同学植树棵数的平均数和方差

2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了纪念“一带一路”倡议提出五周年,某城市举办了一场知识竞赛,为了了解市民对“一带一路”知识的掌握情况,从回收的有效答卷中按青年组和老年组各随机抽取了40份答卷,发现成绩都在内,现将成绩按区间,,,进行分组,绘制成如下的频率分布直方图.

青年组

中老年组

(1)利用直方图估计青年组的中位数和老年组的平均数;

(2)从青年组,的分数段中,按分层抽样的方法随机抽取5份答卷,再从中选出3份答卷对应的市民参加政府组织的座谈会,求选出的3位市民中有2位来自分数段的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)求函数的极值;

(Ⅱ)求证:当时,存在,使得.

查看答案和解析>>

同步练习册答案