精英家教网 > 高中数学 > 题目详情

【题目】已知 是双曲线的左右焦点,点在双曲线上,且,则下列结论正确的是( )

A. 则双曲线离心率的取值范围为

B. 则双曲线离心率的取值范围为

C. 则双曲线离心率的取值范围为

D. 则双曲线离心率的取值范围为

【答案】C

【解析】 时,双曲线离心率范围故选C.

【方法点晴】本题主要考查利用双曲线的简单性质求双曲线的离心率,属于中档题. 求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.求离心率范围问题应先将 用有关的一些量表示出来,再利用其中的一些关系构造出关于的不等式,从而求出的值. 本题是利用焦半径的范围构造出关于的不等式,最后解出的范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共个,生产一个卫兵需分钟,生产一个骑兵需分钟,生产一个伞兵需分钟,已知总生产时间不超过小时,若生产一个卫兵可获利润元,生产一个骑兵可获利润元,生产一个伞兵可获利润元.

(1)用每天生产的卫兵个数与骑兵个数表示每天的利润(元);

(2)怎么分配生产任务才能使每天的利润最大,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正四面体ABCD的外接球的体积为4π,求正四面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知圆 ,点.

(1)求经过点且与圆相切的直线的方程;

(2)过点的直线与圆相交于两点, 为线段的中点,求线段长度的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】明天小强要参加班里组织的郊游活动,为了做好参加这次郊游的准备工作,他测算了如下数据:整理床铺、收拾携带物品8分钟,洗脸、刷牙7分钟,煮牛奶15分钟,吃早饭10分钟,查公交线路图9分钟,给出差在外的父亲发手机短信6分钟,走到公共汽车站10分钟,等公共汽车10分钟.小强粗略地算了一下,总共需要75分钟,为了赶上7:50的公共汽车,小强决定6:30起床,不幸的是他一下子睡到6:50,请你帮小强安排一下时间,画出一份郊游出行前时间安排流程图,使他还能来得及参加此次郊游.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x|x+a|﹣ lnx.
(1)当a=0时,讨论函数f(x)的单调性;
(2)若a<0,讨论函数f(x)的极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)= 则f(f(2))的值为;若f(x)=a有两个不等的实数根,则实数a的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线关于轴对称,它的顶点在坐标原点,点在抛物线上.

(1)写出该抛物线的标准方程及其准线方程;

(2)过点作两条倾斜角互补的直线与抛物线分别交于不同的两点,求证:直线的斜率是一个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:max{a,b}= ,若实数x,y满足:|x|≤3,|y|≤3,﹣4x≤y≤ x,则max{|3x﹣y|,x+2y}的取值范围是(
A.[ ,7]
B.[0,12]
C.[3, ]
D.[0,7]

查看答案和解析>>

同步练习册答案