精英家教网 > 高中数学 > 题目详情
15.半径为2cm,圆心角为120°的扇形面积为$\frac{4π}{3}$.

分析 知道扇形的圆心角,半径,运用扇形面积公式就能求得面积.

解答 解:根据题意,120°为$\frac{2π}{3}$,
S扇形=$\frac{1}{2}$×$\frac{2π}{3}$×4=$\frac{4π}{3}$cm2
故答案为:$\frac{4π}{3}$.

点评 本题主要考查扇形面积的计算,要求掌握扇形面积计算公式S=$\frac{1}{2}$αr2,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.曲线y=xex+1在点(0,1)处的切线方程是(  )
A.x-y+1=0B.2x-y+1=0C.x-y-1=0D.x-2y+2=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知空间单位向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$,$\overrightarrow{{e}_{3}}$,$\overrightarrow{{e}_{1}}$⊥$\overrightarrow{{e}_{2}}$,$\overrightarrow{{e}_{2}}$⊥$\overrightarrow{{e}_{3}}$,$\overrightarrow{{e}_{1}}$•$\overrightarrow{{e}_{3}}$=$\frac{4}{5}$,若空间向量$\overrightarrow{m}$=x$\overrightarrow{{e}_{1}}$+y$\overrightarrow{{e}_{2}}$+z$\overrightarrow{{e}_{3}}$满足:$\overrightarrow{m}$•$\overrightarrow{{e}_{1}}$=4,$\overrightarrow{m}$•$\overrightarrow{{e}_{2}}$=3,$\overrightarrow{m}$•$\overrightarrow{{e}_{3}}$=5,则x+y+z=$\frac{208}{25}$,|$\overrightarrow{m}$|=$\frac{\sqrt{15874}}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知lg2=a,lg3=b,则用a,b表示lg15为(  )
A.b-a+1B.b(a-1)C.b-a-1D.b(1-a)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.经过两点A(4,2y+1),B(2,-3)的直线的倾斜角为45°,则y的值为(  )
A.-1B.-3C.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设函数$f(x)=\left\{\begin{array}{l}|{x+2}|,\;\;\;x≤0\\|{lo{g_2}x}|,\;\;x>0\end{array}\right.$若关于x的方程f(x)=a有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4,则x3(x1+x2)+$\frac{1}{{x}_{3}^{2}{x}_{4}}$的取值范围是(  )
A.(-3,+∞)B.(-∞,3)C.[-3,3)D.(-3,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.若抛物线的焦点在y轴上,点 A(m,-2)在抛物线上,且|AF|=3,求抛物线的标准方程及△OAF的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=x3+ax2+bx的图象与直线y=-3x+8相切于点P(2,2).
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)设函数$g(x)=\frac{1}{3}{x^3}-\frac{m+1}{2}{x^2}+mx-\frac{1}{3}(m>1)$,对于?x1∈[0,4],?x2∈[0,4],使得f(x1)=g(x2),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.命题“?x0∈R,使得$x_0^2+2{x_0}+5=0$”的否定是(  )
A.?x∈R,都有$x_{\;}^2+2x+5≠0$B.?x∈R,都有$x_{\;}^2+2x+5=0$
C.?x0∈R,都有$x_0^2+2{x_0}+5≠0$D.?x∉R,都有$x_{\;}^2+2x+5≠0$

查看答案和解析>>

同步练习册答案