精英家教网 > 高中数学 > 题目详情

【题目】已知等差数列{an}的公差d不为0,且 ,…, ,…(k1<k2<…<kn<…)成等比数列,公比为q.
(1)若k1=1,k2=3,k3=8,求 的值;
(2)当 为何值时,数列{kn}为等比数列;
(3)若数列{kn}为等比数列,且对于任意n∈N* , 不等式 恒成立,求a1的取值范围.

【答案】
(1)解:由已知可得:a1,a3,a8成等比数列,

所以

整理可得:4d2=3a1d.

因为d≠0,所以


(2)解:设数列{kn}为等比数列,则

又因为 成等比数列,

所以

整理,得

因为 ,所以a1(2k2﹣k1﹣k3)=d(2k2﹣k1﹣k3).

因为2k2≠k1+k3,所以a1=d,即

时,an=a1+(n﹣1)d=nd,所以

又因为 ,所以

所以 ,数列{kn}为等比数列.

综上,当 时,数列{kn}为等比数列


(3)解:因为数列{kn}为等比数列,由(2)知a1=d,

,an=a1+(n﹣1)d=na1

因为对于任意n∈N*,不等式 恒成立.

所以不等式

恒成立.

下面证明:对于任意的正实数ε(0<ε<1),总存在正整数n1,使得

要证 ,即证lnn1<n1lnq+lnε.

因为 ,则

解不等式 ,即

可得 ,所以

不妨取 ,则当n1>n0时,原式得证.

所以 ,所以a1≥2,即得a1的取值范围是[2,+∞)


【解析】(1)由已知得:a1 , a3 , a8成等比数列,从而4d2=3a1d,由此能求出 的值.(2)设数列{kn}为等比数列,则 ,推导出 ,从而 ,进而 .由此得到当 时,数列{kn}为等比数列.(3)由数列{kn}为等比数列,a1=d, .得到 恒成立,再证明对于任意的正实数ε(0<ε<1),总存在正整数n1 , 使得 . 要证 ,即证lnn1<n1lnq+lnε.由此能求出a1的取值范围.
【考点精析】掌握等比数列的基本性质是解答本题的根本,需要知道{an}为等比数列,则下标成等差数列的对应项成等比数列;{an}既是等差数列又是等比数列== {an}是各项不为零的常数列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣a|+2|x+b|(a>0,b>0)的最小值为1.
(1)求a+b的值;
(2)若 恒成立,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C1 (参数θ∈R),以坐标原点O为极点,x轴的非负半轴为极轴,建立极坐标系,曲线C2的极坐标方程为 ,点Q的极坐标为
(1)将曲线C2的极坐标方程化为直角坐标方程,并求出点Q的直角坐标;
(2)设P为曲线C1上的点,求PQ中点M到曲线C2上的点的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家电专卖店试销A、B、C三种新型空调,连续五周销售情况如表所示:

第一周 第二周 第三周 第四周 第五周

A型数量/台 12 8 15 22 18

B型数量/台 7 12 10 10 12

C型数量/台

(I)求A型空调平均每周的销售数量;

(Ⅱ)为跟踪调查空调的使用情况,从该家电专卖店第二周售出的A、B型空调销售记录中,随机抽取一台,求抽到B型空调的概率;

(III)已知C型空调连续五周销量的平均数为7,方差为4,且每周销售数量互不相同,求C型空调这五周中的最大销售数量。(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了响应党的十九大所提出的教育教学改革,某校启动了数学教学方法的探索,学校将髙一年级部分生源情况基本相同的学生分成甲、乙两个班,每班40人,甲班按原有传统模式教学,乙班实施自主学习模式.经过一年的教学实验,将甲、乙两个班学生一年来的数学成绩取平均数,两个班学生的平均成绩均在[50,100],按照区间[50,60),[60,70),[70,80),[80,90),[90,100]进行分组,绘制成如下频率分布直方图,规定不低于80(百分制)为优秀,

(I)完成表格,并判断是否有90%以上的把握认为数学成绩优秀与教学改革有关

〔Ⅱ)从乙班[70,80),[80,90),[90,100]分数段中,按分层抽样随机抽取7名学生座谈,

从中选三位同学发言,记来自[80,90)发言的人数为随机变量x,求x的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(2ωx﹣ )(ω>0)的最小正周期为4π,则(
A.函数f(x)的图象关于点( ,0)对称
B.函数f(x)的图象关于直线x= 对称
C.函数f(x)的图象在( ,π)上单调递减
D.函数f(x)的图象在( ,π)上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为鼓励应届毕业大学生自主创业,国家对应届毕业大学生创业贷款有贴息优惠政策,现有应届毕业大学生甲贷款开小型超市,初期投入为72万元,经营后每年的总收入为50万元,该公司第年需要付出的超市维护和工人工资等费用为万元,已知为等差数列,相关信息如图所示.

(Ⅰ)求

(Ⅱ)该超市第几年开始盈利?(即总收入减去成本及所有费用之差为正值)

(Ⅲ)该超市经营多少年,其年平均获利最大?最大值是多少?(年平均获利

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: (a>b>0)的两个焦点为F1 , F2 , 离心率为 ,点A,B在椭圆上,F1在线段AB上,且△ABF2的周长等于4
(1)求椭圆C的标准方程;
(2)过圆O:x2+y2=4上任意一点P作椭圆C的两条切线PM和PN与圆O交于点M,N,求△PMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的多面体中,平面平面,且的中点.

求证:

为线段上一点,且求证:平面

在棱上是否存在一点,使得直线与平面所成的角为.若存在,指出点的位置;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案