【题目】已知等差数列{an}的公差d不为0,且 , ,…, ,…(k1<k2<…<kn<…)成等比数列,公比为q.
(1)若k1=1,k2=3,k3=8,求 的值;
(2)当 为何值时,数列{kn}为等比数列;
(3)若数列{kn}为等比数列,且对于任意n∈N* , 不等式 恒成立,求a1的取值范围.
【答案】
(1)解:由已知可得:a1,a3,a8成等比数列,
所以 ,
整理可得:4d2=3a1d.
因为d≠0,所以
(2)解:设数列{kn}为等比数列,则 .
又因为 , , 成等比数列,
所以 .
整理,得 .
因为 ,所以a1(2k2﹣k1﹣k3)=d(2k2﹣k1﹣k3).
因为2k2≠k1+k3,所以a1=d,即 .
当 时,an=a1+(n﹣1)d=nd,所以 .
又因为 ,所以 .
所以 ,数列{kn}为等比数列.
综上,当 时,数列{kn}为等比数列
(3)解:因为数列{kn}为等比数列,由(2)知a1=d, .
,an=a1+(n﹣1)d=na1.
因为对于任意n∈N*,不等式 恒成立.
所以不等式 ,
即 , 恒成立.
下面证明:对于任意的正实数ε(0<ε<1),总存在正整数n1,使得 .
要证 ,即证lnn1<n1lnq+lnε.
因为 ,则 ,
解不等式 ,即 ,
可得 ,所以 .
不妨取 ,则当n1>n0时,原式得证.
所以 ,所以a1≥2,即得a1的取值范围是[2,+∞)
【解析】(1)由已知得:a1 , a3 , a8成等比数列,从而4d2=3a1d,由此能求出 的值.(2)设数列{kn}为等比数列,则 ,推导出 ,从而 ,进而 .由此得到当 时,数列{kn}为等比数列.(3)由数列{kn}为等比数列,a1=d, .得到 , 恒成立,再证明对于任意的正实数ε(0<ε<1),总存在正整数n1 , 使得 . 要证 ,即证lnn1<n1lnq+lnε.由此能求出a1的取值范围.
【考点精析】掌握等比数列的基本性质是解答本题的根本,需要知道{an}为等比数列,则下标成等差数列的对应项成等比数列;{an}既是等差数列又是等比数列== {an}是各项不为零的常数列.
科目:高中数学 来源: 题型:
【题目】已知曲线C1: (参数θ∈R),以坐标原点O为极点,x轴的非负半轴为极轴,建立极坐标系,曲线C2的极坐标方程为 ,点Q的极坐标为 .
(1)将曲线C2的极坐标方程化为直角坐标方程,并求出点Q的直角坐标;
(2)设P为曲线C1上的点,求PQ中点M到曲线C2上的点的距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某家电专卖店试销A、B、C三种新型空调,连续五周销售情况如表所示:
第一周 第二周 第三周 第四周 第五周
A型数量/台 12 8 15 22 18
B型数量/台 7 12 10 10 12
C型数量/台
(I)求A型空调平均每周的销售数量;
(Ⅱ)为跟踪调查空调的使用情况,从该家电专卖店第二周售出的A、B型空调销售记录中,随机抽取一台,求抽到B型空调的概率;
(III)已知C型空调连续五周销量的平均数为7,方差为4,且每周销售数量互不相同,求C型空调这五周中的最大销售数量。(只需写出结论)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了响应党的十九大所提出的教育教学改革,某校启动了数学教学方法的探索,学校将髙一年级部分生源情况基本相同的学生分成甲、乙两个班,每班40人,甲班按原有传统模式教学,乙班实施自主学习模式.经过一年的教学实验,将甲、乙两个班学生一年来的数学成绩取平均数,两个班学生的平均成绩均在[50,100],按照区间[50,60),[60,70),[70,80),[80,90),[90,100]进行分组,绘制成如下频率分布直方图,规定不低于80分(百分制)为优秀,
,
(I)完成表格,并判断是否有90%以上的把握认为“数学成绩优秀与教学改革有关”
〔Ⅱ)从乙班[70,80),[80,90),[90,100]分数段中,按分层抽样随机抽取7名学生座谈,
从中选三位同学发言,记来自[80,90)发言的人数为随机变量x,求x的分布列和期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sin(2ωx﹣ )(ω>0)的最小正周期为4π,则( )
A.函数f(x)的图象关于点( ,0)对称
B.函数f(x)的图象关于直线x= 对称
C.函数f(x)的图象在( ,π)上单调递减
D.函数f(x)的图象在( ,π)上单调递增
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为鼓励应届毕业大学生自主创业,国家对应届毕业大学生创业贷款有贴息优惠政策,现有应届毕业大学生甲贷款开小型超市,初期投入为72万元,经营后每年的总收入为50万元,该公司第年需要付出的超市维护和工人工资等费用为万元,已知为等差数列,相关信息如图所示.
(Ⅰ)求;
(Ⅱ)该超市第几年开始盈利?(即总收入减去成本及所有费用之差为正值)
(Ⅲ)该超市经营多少年,其年平均获利最大?最大值是多少?(年平均获利)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: (a>b>0)的两个焦点为F1 , F2 , 离心率为 ,点A,B在椭圆上,F1在线段AB上,且△ABF2的周长等于4 .
(1)求椭圆C的标准方程;
(2)过圆O:x2+y2=4上任意一点P作椭圆C的两条切线PM和PN与圆O交于点M,N,求△PMN面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的多面体中,平面,平面,,且,是的中点.
()求证:.
()若为线段上一点,且,求证:平面.
()在棱上是否存在一点,使得直线与平面所成的角为.若存在,指出点的位置;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com