精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左、右焦点分别为,离心率,过且与轴垂直的直线与椭圆在第一象限内的交点为,且.

(1)求椭圆的方程;

(2)过点的直线交椭圆两点,当时,求直线的方程.

【答案】(1) .(2) .

【解析】试题分析:(1)由题意得 ,∴.①∵,∴.②联立①②得a,b,c即得椭圆的方程(2)设直线方程为: 点坐标为 点坐标为.联立根据韦达定理由弦长公式得 ,又点到直线的距离 解得k值,即得直线的方程.

试题解析:

(1)设 ,则

,∴.

,∴.②

联立①②得 .

椭圆方程为.

(2)显然直线斜率存在,设直线方程为: 点坐标为 点坐标为.

联立方程组

由弦长公式得

到直线的距离

解得.

的方程为: .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)当时,若方程有两个相异实根,且,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,底面ABC为正三角形,EA⊥平面ABCDC⊥平面ABCEAAB=2DC=2a,设FEB的中点.

(1)求证:DF∥平面ABC

(2)求直线AD与平面AEB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图ABC内接于圆柱的底面圆OAB是圆O的直径AB2BC1DCEB是两条母线tanEAB.

(1)求三棱锥CABE的体积;

(2)证明:平面ACD⊥平面ADE

(3)CD上是否存在一点M使得MO∥平面ADE证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】心理学家发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学,给所有同学几何和代数各一题,让各位同学自由选择一道题进行解答.统计情况如下表:(单位:人)

(1)能否据此判断有的把握认为视觉和空间能力与性别有关?

(2)经过多次测试发现:女生甲解答一道几何题所用的时间在5—7分钟,女生乙解答一道几何题所用的时间在6—8分钟,现甲、乙两人独立解答同一道几何题,求乙比甲先解答完的概率;

(3)现从选择几何题的8名女生中任意抽取两人对她们的答题情况进行研究,记甲、乙两名女生被抽到的人数为,求的分布列及数学期望.

附表及公式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求的单调区间;

(2)若关于的不等式对一切恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆C 的左、右顶点分别为A1A2,点PC上且直线PA2的斜率的取值范围是[-2,-1],那么直线PA1斜率的取值范围是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018届江西省南昌市高三第一轮已知分别为三个内角的对边,且

Ⅰ)求

Ⅱ)若边上的中线, ,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中, 平面,在平行四边形中,

(1)求证: 平面

(2)求二面角的余弦值.

查看答案和解析>>

同步练习册答案