精英家教网 > 高中数学 > 题目详情
已知函数f (x)=4sinx•sin2
π
4
+
x
2
)+2cos2x+1+a,x∈R是一个奇函数.
(1)求a的值和f (x)的值域;
(2)设w>0,若y=f (wx)在区间[-
π
2
3
]的增函数,求w的取值范围;
(3)设|θ|<
π
2
,若对x取一切实数,不等式4+f (x+θ)f (x-θ)>2f (x)都成立,求θ的取值范围.
分析:首先将函数化简(1)根据函数是奇函数求出a的值,然后有正弦函数求出值域;
(2)写出函数f (wx)的式子,然后根据正弦函数的单调性求出x的范围,进而根据区间[-
π
2
3
]的增函数,求出w的取值范围;
(3)首先求出4+f (x+θ)f (x-θ)并化简和求出最小值
3
4
,再利用sin2θ<
3
4
,求出结果.
解答:解:化简得f(x)=2sinx+a+3
(1)f(-x)=-f(x)?a=-3∴f(x)=2sinx
f(x)∈[-2,2](4分)
(2)f(wx)=2sinwx(w>0)
-
π
2
+2kπ≤wx≤2kπ+
π
2
k∈Z
-
π
2w
+
2kπ
w
≤x≤
w
+
π
2w

精英家教网
-
π
2w
≤-
π
2
2
3
π≤
π
2w
?0<w≤
3
4

综上以上,0<w≤
3
4
(8分)
(3)|θ|<
π
2
,x∈R时
4+4sin(x+θ)sin(x-θ)>4sinx
即sin2x-sinx+1>sin2θ恒成立
(sin2x-sinx+1)min=
3
4

∴sin2θ<
3
4

-
3
2
<sinθ<
3
2
θ∈(-
π
2
π
2

∴θ∈(-
π
3
π
3
)(13分)
点评:本题考查了正弦函数的单调性和奇偶性以及不等式恒成立问题,对于不等式恒成立问题转化成求函数最值问题即可.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案