精英家教网 > 高中数学 > 题目详情
17.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)和圆O:x2+y2=a2,F1(-1,0),F2(1,0)分别是椭圆的左、右两焦点,过F1且倾斜角为α$({α∈({0,\frac{π}{2}}]})$的动直线l交椭圆C于A,B两点,交圆O于P,Q两点(如图所示,点A在x轴上方).当α=$\frac{π}{4}$时,弦PQ的长为$\sqrt{14}$. 
(1)求圆O与椭圆C的方程;
(2)若2|BF2|=|AF2|+|AB|,求直线PQ的方程.

分析 (1)取PQ的中点D,连接OD,OP,求出OD,利用弦PQ的长为$\sqrt{14}$,求出OQ,可得a,结合隐含条件求得b,则圆O和椭圆C的方程可求;
(2)由(1)可得椭圆的长半轴长及离心率,设B的坐标,利用焦半径公式可得|BF2|,|AF2|,代入2|BF2|=|AF2|+|AB|,求出B的坐标,由直线方程的两点式求得B、F1所在直线方程,即直线PQ的方程.

解答 解:(1)取PQ的中点D,连接OD,OP,
由$α=\frac{π}{4}$,c=1,可得OD=$\frac{\sqrt{2}}{2}$,
∵弦PQ的长为$\sqrt{14}$,
∴$O{Q}^{2}=\frac{P{Q}^{2}}{4}$+OD2=4,
∴a2=4,b2=a2-c2=3,
∴圆O的方程为x2+y2=4,
椭圆C的方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;
(2)由(1)知,a=2,e=$\frac{1}{2}$,
又2|BF2|=|AF2|+|AB|,得2|BF2|=|AF2|+|AF1|+|BF1|,
∴2|BF2|=4+|BF1|,
设B(x0,y0),则|BF2|=$2-\frac{1}{2}{x}_{0}$,|BF1|=$2+\frac{1}{2}{x}_{0}$,
代入2|BF2|=4+|BF1|,得$2(2-\frac{1}{2}{x}_{0})=4+2+\frac{1}{2}{x}_{0}$,解得${x}_{0}=-\frac{4}{3}$,
代入$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$,得${y}_{0}=-\frac{\sqrt{15}}{3}$.
∴B($-\frac{4}{3},-\frac{\sqrt{15}}{3}$),
则直线PQ的方程为:$\frac{y}{-\frac{\sqrt{15}}{3}}=\frac{x+1}{-\frac{4}{3}+1}$,即$\sqrt{15}x-y+\sqrt{15}=0$.

点评 本题考查圆和椭圆的方程,考查等差数列的性质,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.若直线y=kx+3与直线y=$\frac{1}{k}$x-5的交点在第一象限,则k的取值范围是0<k<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.命题p:?x∈N,x2≥x,则该命题的否定是?x∈N,x2<x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.f(x)是奇函数,当x<0时,f(x)=log5(1-x),则f(4)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设角α的终边经过点P(sin2,cos2),则$\sqrt{2(1-sinα)}$的值等于(  )
A.sin1B.cos1C.2sin1D.2cos1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在三棱锥S-ABC中,AS=AB,CS=CB,点E,F,G分别是棱SA,SB,SC的中点.求证:
(1)平面EFG∥平面ABC;
(2)SB⊥AC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=$\frac{2}{{{2^x}+1}}$+sinx,则f(-8)+f(-7)+f(-6)+…+f(8)=(  )
A.0B.7C.17D.27

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某厂家举行大型的促销活动,经测算某产品当促销费用为x万元时,销售量t万件满足t=5-$\frac{9}{2(x+1)}$(其中0≤x≤a,a为正常数).现假定生产量与销售量相等,已知生产该产品t万件还需投入成本(10+2t)万元(不含促销费用),产品的销售价格定为(4+$\frac{20}{t}$)万元/万件.
(I)将该产品的利润y万元表示为促销费用x万元的函数;
(II)促销费用投入多少万元时,厂家的利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知四棱锥P-ABCD,底面ABCD是∠A=60°、边长为a的菱形,又PD⊥底面 ABCD,且PD=CD,点M、N分别是棱AD、PC的中点.
(1)证明:DN∥平面PMB;
(2)证明:平面PMB⊥平面PAD;
(3)直线PB与平面PCD所成角的正弦值.

查看答案和解析>>

同步练习册答案