精英家教网 > 高中数学 > 题目详情
1.函数$y=\sqrt{-{x^2}-2x+8}$的定义域为A,值域为B,则A∪B=[-4,3].

分析 根据二次根式的性质求出A,根据二次函数的性质求出B,从而求出A∪B即可.

解答 解:由题意得:
-x2-2x+8≥0,
解得:-4≤x≤2,
故A=[-4,2],
而f(x)=-x2-2x+8=-(x+1)2+9,x∈[-4,2],
故f(x)的最大值是9,最小值是0,
故B=[0,3],
故A∪B=[-4,3],
故答案为:[-4,3].

点评 本题考查了二次根式以及二次函数的性质,考查求函数的定义域、值域问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图所示的几何体QPABCD为一简单组合体,在底面ABCD中,∠DAB=60°,AD⊥DC,AB⊥BC,QD⊥平面ABCD,PA∥QD,PA=1,AD=AB=QD=2.
(1)求证:平面PAB⊥平面QBC;
(2)求该组合体QPABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.方程$\sqrt{{{({x-2})}^2}+{y^2}}=\frac{{|{3x-4y+2}|}}{5}$表示的曲线为(  )
A.抛物线B.椭圆C.双曲线D.直线

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数y=ln(4-x2)+$\sqrt{1-tanx}$的定义域为(-$\frac{π}{2}$,$\frac{π}{4}$]∪($\frac{π}{2}$,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.等比数列{an}的各项均为正数,且a4=a2•a5,3a5+2a4=1,则Tn=a1a2…an的最大值为27.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.等比数列{an}中,公比q=2,a1+a4+a7…+a97=11,则数列{an}的前99项的和S99=77.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=3cos($\frac{3π}{2}$+2ωx)+sin(2ωx-π)+1,ω>0
(1)若ω=1,f(x+θ)是偶函数,求θ的最小值.
(2)若ω=1,存在x∈[$\frac{π}{12}$,$\frac{π}{3}$],使(f(x)-1)2-(f(x)-1)m+3≤0成立,求m取值范围.
(3)若y=f(x)-1在x∈(0,2015)上至少存在2016个最值点,求ω范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知f(x)是定义在R上的奇函数满足:f(x)=f (x+4),当x∈(0,2)时,f(x)=2x2,则f(7)=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.有4张分别标有数字1,2,3,4的红色卡片和4张分别标有数字1,2,3,4的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标数字之和等于10,则不同的排法共有(  )种.
A.432B.384C.308D.288

查看答案和解析>>

同步练习册答案