精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,已知点F为抛物线的焦点,点A在抛物线E上,

点B在x轴上,且是边长为2的等边三角形。

(1)求抛物线E的方程;

(2)设C是抛物线E上的动点,直线为抛物线E在点C处的切线,求点B到直线距离的最小值,并求此时点C的坐标。

【答案】(1)(2)最小值为2,

【解析】

(1)先求出p的值,即得抛物线的方程.(2)

设点,求出直线的方程为,再求得点到直线的距离为

,再利用基本不等式求函数的最小值及其点C的坐标

(1)因为是边长为2的等边三角形,所以

代入得,

解得(舍去).

所以抛物线的方程.

(2)设点,直线的方程为

,得

因为直线为抛物线在点处的切线,

所以,解得

所以直线的方程为

所以点到直线的距离为

当且仅当,即时取得最小值2,此时.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列满足

(1)求证:数列是等差数列,并求数列的通项公式;

(2)记为数列的前项和,若对任意的正整数都成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】yf(x)(1]上有定义,对于给定的实数K,定义fK(x),给出函数f(x)2x14x,若对于任意x(1],恒有fK(x)f(x),则(  )

A.K的最大值为0

B.K的最小值为0

C.K的最大值为1

D.K的最小值为1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,点Q在棱AB上.

(1)证明:平面.

(2)若三棱锥的体积为,求点B到平面PDQ的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项的和为数列满足且对任意正整数都有成等比数列.

(1)求数列的通项公式.

(2)证明数列为等差数列.

(3)令问是否存在正整数使得成等比数列?若存在,求出的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】6个人站成前后二排,每排3人,若甲、乙两人左右、前后均不相邻,则不同的站法种数为

A. 384 B. 480 C. 768 D. 240

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|x﹣a|+3x,其中a>0.

(1)当a=1时,求不等式f(x)>3x+2的解集;

(2)若不等式f(x)≤0的解集为{x|x≤﹣1},求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1(a>b>0)的一个焦点是F(1,0),且离心率为.

(Ⅰ)求椭圆C的方程;

(Ⅱ)设经过点F的直线交椭圆CMN两点,线段MN的垂直平分线交y轴于点P(0y0),求y0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设二次函数的图像过点,且对于任意实数,不等式恒成立

(1)求的表达式;

(2)设,若上是增函数,求实数的取值范围。

查看答案和解析>>

同步练习册答案