精英家教网 > 高中数学 > 题目详情

已知二面角α-l-β的大小为50°,P为空间中任意一点,则过点P且与平面α,β所成的角都是25°的直线的条数为


  1. A.
    2
  2. B.
    3
  3. C.
    4
  4. D.
    5
B
分析:利用线面角的概念及角平分线的性质,分析出所求直线二面角的平分面上,再根据线面角的大小变化确定出直线条数.
解答:首先给出下面两个结论
①两条平行线与同一个平面所成的角相等.
②与二面角的两个面成等角的直线在二面角的平分面上.
图1.
(1)如图1,过二面角α-l-β内任一点作棱l的垂面AOB,交棱于点O,与两半平面于OA,OB,则∠AOB为二面角α-l-β的平面角,∠AOB=50°
设OP1为∠AOB的平分线,则∠P1OA=∠P1OB=25°,与平面α,β所成的角都是25°,此时过P且与OP1平行的直线符合要求,有一条.当OP1以O为轴心,在二面角α-l-β的平分面上转动时,OP1与两平面夹角变小,不再会出现25°情形.
图2.
(2)如图2,设OP2为∠AOB的补角∠AOB′,则∠P2OA=∠P2OB=65°,与平面α,β所成的角都是65°.当OP2以O为轴心,在二面角α-l-β′的平分面上转动时,OP2与两平面夹角变小,对称地在图中OP2两侧会出现25°情形,有两条.此时过P且与OP2平行的直线符合要求,有两条.
综上所述,直线的条数共有三条.
故选B.
点评:本题考查二面角、线面角的概念及度量.利用线面角的概念及角平分线的性质,得出所求直线的空间位置,线面角的大小变化是关键.考查空间想象、分析解决问题能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二面角α-l-β为60°,若平面α内有一点A到平面β的距离为
3
,那么A在平面β内的射影B到平面α的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二面角α-l-β的大小为60°,且m⊥α,n⊥β,则异面直线m,n所成的角为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•黄冈模拟)已知二面角α-l-β的大小为50°,b、c是两条异面直线,则下面的四个条件中,一定能使b和c所成的角为50°的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二面角α-l-β,直线a?α,b?β,且a与l不垂直,b与l不垂直,那么(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二面角α-l-β的大小为60°,b和c是两条直线,则下列四个条件中,一定能使b和c所成的角为60°的条件是(  )
A、b∥α,c∥βB、b∥α,c⊥βC、b⊥α,c⊥βD、b⊥α,c∥β

查看答案和解析>>

同步练习册答案