精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左右焦点分别为,点在椭圆上, ,过点的直线与椭圆分别交于两点.

(1)求椭圆的方程及离心率;

(2)若的面积为为坐标原点,求直线的方程.

【答案】(1)椭圆的方程为,离心率为.(2).

【解析】试题分析: 1根据点在椭圆, 以及,计算出椭圆的方程和离心率; 2分别讨论直线轴垂直时和直线轴不垂直时两类情况, 当直线轴不垂直时,联立直线和椭圆方程,根据三角形的面积,化简成关于k的方程,解出k值,进而求得直线的方程.

试题解析:解:(1)由题意得,解得

故所求椭圆的方程为,离心率为.

(2)当直线轴垂直时, ,此时不符合题意,舍去;

当直线轴不垂直时,设直线的方程为

,消去得:

,则

所以

,

原点到直线的距离为

所以三角形的面积

,得,故

所以直线的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,满足的等差中项为).

(1)求数列的通项公式;

(2)是否存在正整数,是不等式)恒成立,若存在,求出的最大值;若不存在,请说明理由.

(3)设 ,若集合恰有个元素,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于关于x的不等式ax2+bx+c<0的解集为(﹣∞,﹣2)∪(﹣ ,+∞),则不等式ax2﹣bx+c>0的解集为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥P﹣ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=
(Ⅰ)证明:平面PBE⊥平面PAB;
(Ⅱ)求二面角A﹣BE﹣P的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在长方体ABCD﹣A1B1C1D1中,已知DA=DC=4,DD1=3,求直线A1B与平面ACC1A1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC﹣A1B1C1中,已知AB⊥侧面BB1C1C,CB⊥C1B,BC=1,CC1=2,A1B1=
(1)试在棱CC1(不包含端点C,C1)上确定一点E的位置,使得EA⊥EB1
(2)在(1)的条件下,求AE和BC1所成角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂某种产品的年固定成本为250万元,每生产x千件,需另投入成本为C(x),当年产量不足80千件时,C(x)=(万元).当年产量不小于80千件时,C(x)=51x+(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.
(Ⅰ)写出年利润L(x)(万元)关于年产量x(千件)的函数解析式;
(Ⅱ)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图(1)五边形中,

,将沿折到的位置,得到四棱锥,如图(2),点为线段的中点,且平面.

(1)求证:平面平面

(2)若四棱柱的体积为,求四面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设全集为R,集合A={x||x|≤2},B={x| >0},则A∩RB=(
A.[﹣2,1)
B.[﹣2,1]
C.[﹣2,2]
D.[﹣2,+∞)

查看答案和解析>>

同步练习册答案