【题目】已知椭圆的左右焦点分别为,点在椭圆上, ,过点的直线与椭圆分别交于两点.
(1)求椭圆的方程及离心率;
(2)若的面积为为坐标原点,求直线的方程.
科目:高中数学 来源: 题型:
【题目】已知数列的前项和为,满足与的等差中项为().
(1)求数列的通项公式;
(2)是否存在正整数,是不等式()恒成立,若存在,求出的最大值;若不存在,请说明理由.
(3)设 ,若集合恰有个元素,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,四棱锥P﹣ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA= .
(Ⅰ)证明:平面PBE⊥平面PAB;
(Ⅱ)求二面角A﹣BE﹣P的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱ABC﹣A1B1C1中,已知AB⊥侧面BB1C1C,CB⊥C1B,BC=1,CC1=2,A1B1= ,
(1)试在棱CC1(不包含端点C,C1)上确定一点E的位置,使得EA⊥EB1;
(2)在(1)的条件下,求AE和BC1所成角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂某种产品的年固定成本为250万元,每生产x千件,需另投入成本为C(x),当年产量不足80千件时,C(x)=(万元).当年产量不小于80千件时,C(x)=51x+(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.
(Ⅰ)写出年利润L(x)(万元)关于年产量x(千件)的函数解析式;
(Ⅱ)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图(1)五边形中,
,将沿折到的位置,得到四棱锥,如图(2),点为线段的中点,且平面.
(1)求证:平面平面;
(2)若四棱柱的体积为,求四面体的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设全集为R,集合A={x||x|≤2},B={x| >0},则A∩RB=( )
A.[﹣2,1)
B.[﹣2,1]
C.[﹣2,2]
D.[﹣2,+∞)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com