精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(I)讨论函数的单调性;

(II)若存在两个极值点,求证:.

【答案】(I)见解析;(II)见解析

【解析】

(I),讨论k,确定的正负即可求其单调性;(II)由(I)存在两个极值点,得,且,整理,证明 ,即可得解

(I)由题意得,函数的定义域为.

时,上恒成立,则上单调递增;

时,若,即时,上恒成立,

上单调递增;若,即时,

,解得

,解得,令,解得

上单调递增,

上单调递减.

综上所述,当时,上单调递增;

时,上单调递增,

上单调递减.

(II)由(I)得,若存在两个极值点,则,且

.

下面先证明:设,则

易得上单调递增,在上单调递减,

,即.

又由(I)得在区间上单调递减,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数上没有最小值,则的取值范围是________________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两位同学进入新华书店购买数学课外阅读书籍,经过筛选后,他们都对三种书籍有购买意向,已知甲同学购买书籍的概率分别为,乙同学购买书籍的概率分别为,假设甲、乙是否购买三种书籍相互独立.

1)求甲同学购买3种书籍的概率;

2)设甲、乙同学购买2种书籍的人数为,求的概率分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的各项均为正数,其前n项和为Sn,且an2+4an8Sn0,则an_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的导函数为.

1)试讨论函数的零点个数;

2)若对任意的,关于的不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,一动圆与直线相切且与圆外切.

(1)求动圆圆心的轨迹的方程;

(2)过作直线,交(1)中轨迹两点,若中点的纵坐标为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 山东省《体育高考方案》于20122月份公布,方案要求以学校为单位进行体育测试,某校对高三1班同学按照高考测试项目按百分制进行了预备测试,并对50分以上的成绩进行统计,其频率分布直方图如图所示,若90~100分数段的人数为2.

)请估计一下这组数据的平均数M

)现根据初赛成绩从第一组和第五组(从低分段到高分段依次为第一组、第二组、、第五组)中任意选出两人,形成一个小组.若选出的两人成绩差大于20,则称这两人为帮扶组,试求选出的两人为帮扶组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)试讨论函数的单调性;

(2)若,证明:方程有且仅有3个不同的实数根.(附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂生产两种零件,其质量测试按指标划分,指标大于或等于的为正品,小于的为次品.现随机抽取这两种零件各100个进行检测,检测结果统计如下:

测试指标

零件

8

12

40

30

10

零件

9

16

40

28

7

(Ⅰ)试分别估计两种零件为正品的概率;

(Ⅱ)生产1个零件,若是正品则盈利50元,若是次品则亏损10元;生产1个零件,若是正品则盈利60元,若是次品则亏损15元,在(Ⅰ)的条件下:

(i)设为生产1个零件和一个零件所得的总利润,求的分布列和数学期望;

(ii)求生产5个零件所得利润不少于160元的概率.

查看答案和解析>>

同步练习册答案