精英家教网 > 高中数学 > 题目详情

【题目】数列是首项与公比均为的等比数列(,且),数列满足

1)求数列的前项和

2)若对一切都有,求的取值范围

【答案】(1);(2).

【解析】试题分析:1先求出数列的通项公式,从而可得利用错位相减法求解即可;2)由讨论 时两种情况,分别分离参数,求出的最值,即可求的取值范围.

试题解析(1)∵数列是首项为公比为的等比数列

从而

(2)由

①当 可得

对一切都成立此时的解为

②当 可得

对一切都成立时

由①,②可知,对一切都有的取值范围是

【易错点晴】本题主要考察等差数列的通项公式、等比数列的求和公式、错位相减法求数列的和,以及不等式恒成立问题,属于难题. “错位相减法求数列的和是重点也是难点,利用错位相减法求数列的和应注意以下几点:①掌握运用错位相减法求数列的和的条件(一个等差数列与一个等比数列的积);②相减时注意最后一项 的符号;③求和时注意项数别出错;④最后结果一定不能忘记等式两边同时除以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】读下列各题所给的程序,依据程序画出程序框图,并说明其功能:

(1)INPUT “x=”;x

IF x>1 OR x<-1 THEN

y=1

ELSE y=0

END IF

PRINE y

END

(2)INPUT “输入三个正数a,b,c=”;a,b,c

IF a+b>c AND a+c>b AND b+c>a THEN

p=(a+b+c)/2

S=SQR(p*(p-a)*(p-b)*(p-c))

PRINT “三角形的面积S=”S

ELSE

PRINT “构不成三角形”

END IF

END

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

时, 的零点为______;(将结果直接填写在横线上)

时,如果存在,使得,试求的取值范围;

Ⅲ)如果对于任意,都有成立,试求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的对称中心为原点O,焦点在x轴上,离心率为,且点在该椭圆上。

(I)求椭圆C的方程;

(II)过椭圆C的左焦点的直线l与椭圆C相交于两点,若的面积为,求圆心在原点O且与直线l相切的圆的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年“双11”前夕,某市场机构随机对中国公民进行问卷调查,用于调研“双11”民众购物意愿和购物预计支出状况. 分类统计后,从有购物意愿的人中随机抽取100人作为样本,将他(她)们按照购物预计支出(单位:千元)分成8组: [0, 2),[2, 4),[4, 6),…,[14, 16],并绘制成如图所示的频率分布直方图,其中,样本中购物预计支出不低于1万元的人数为a.

(Ⅰ) (i)求a的值,并估算这100人购物预计支出的平均值;

(ii)以样本估计总体,在有购物意愿的人群中,若至少有65%的人购物预计支出不低于x千元,求x的最大值.

(Ⅱ) 如果参与本次问卷调查的总人数为t,问卷调查得到下列信息:

①参与问卷调查的男女人数之比为2:3;

②男士无购物意愿和有购物意愿的人数之比是1:3,女士无购物意愿和有购物意愿的人数之比为1:4;

③能以90%的把握认为“双11购物意愿与性别有关”,但不能以95%的把握认为“双11购物意愿与性别有关”.

根据以上数据信息,求t所有可能取值组成的集合M.

附: ,其中.

独立检验临界值表:

0.100

0.050

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假定下述数据是甲、乙两个供货商的交货天数:

甲:10 9 10 10 11 11 9 11 10 10

乙:8 10 14 7 10 11 10 8 15 12

估计两个供货商的交货情况,并问哪个供货商交货时间短一些,哪个供货商交货时间较具一致性与可靠性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn,满足Sn=2an-1.(n∈N*)

(Ⅰ)求数列{an}的通项公式;

(Ⅱ)若数列{bn}满足bn=an,求数列{bn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在棱锥中, 为矩形, 与面角, 与面角.

1)在上是否存在一点,使,若存在确定点位置,若不存在,请说明理由;

2)当中点时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点 ,圆 ,过的动直线两点,线段中点为 为坐标原点。

1)求点的轨迹方程;

2)当时,求直线的方程以及面积。

查看答案和解析>>

同步练习册答案