精英家教网 > 高中数学 > 题目详情
精英家教网如图,双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的离心率为
5
2
F1
、F2分别为左、右焦点,M为左准线与渐近线在第二象限内的交点,且
F1M
.
F2M
=-
1
4

(I)求双曲线的方程;
(II)设A(m,0)和B(
1
m
,0)
(0<m<1)是x轴上的两点.过点A作斜率不为0的直线l,使得l交双曲线于C、D两点,作直线BC交双曲线于另一点E.证明直线DE垂直于x轴.中心O为圆心,分别以a和b为半径作大圆和.
分析:(I)设点M(x,y),根据题设条件联立方程求得M的坐标,根据
F1M
.
F2M
=-
1
4
.
求得a,b和c的关系利用a2+b2=c2求得c,b和a,答案可得.
(II)设点C(x1,y1),D(x2,y2),E(x3,y3),则可表示出直线l的方程,直线与双曲线联立方程,可求得x1x2的表达式,求得x2的表达式,同理可求得x3的表达式,最后得出以x2=x3,判断出故直线DE垂直于x轴.
解答:(I)解:根据题设条件,F1(-c,0),F2(c,0).
设点M(x,y),则x、y满足
x=-
a2
c
y=-
b
a
x.

e=
c
a
=
5
2
,解得M(-
2a
5
2b
5
)

F1M
.
F2M
=(-
2a
5
+c,
2b
5
).(-
2a
5
-c,
2b
5
)
=
4
5
a2-c2+
4
5
b2=-
1
4
.

利用a2+b2=c2,得c2=
5
4
,于是a2=1,b2=
1
4
.

因此,所求双曲线方程为x2-4y2=1.

(II)解:设点C(x1,y1),D(x2,y2),E(x3,y3),则直线l的方程为y=
y1
x1-m
(x-m).

于是C(x1,y1)、D(x2,y2)两点坐标满足
y=
y1
x1-m
(x-m)①
x2-4y2=1②

将①代入②得(x12-2x1m+m2-4y12)x2+8my12x-4y12m2-x12+2mx1-m2=0.
由已知,显然m2-2x1m+1≠0.于是x1x2=-
x12-2mx1+m2x12
m2-2x1m+1
.

因为x1≠0,得x2=-
x1-2m+m2x1
m2-2x1m+1
.

同理,C(x1,y1)、E(x3,y3)两点坐标满足
y=
y1
x1-
1
m
(x-
1
m
)
x2-4y2=1.

可解得x3=-
x1-2
1
m
+(
1
m
)
2
x1
(
1
m
)
2
-2x1m+1
=-
m2x1-2m+x1
1-2x1m+m2
.

所以x2=x3,故直线DE垂直于x轴.
点评:本小题主要考查双曲线的标准方程和几何性质、直线方程、平面向量、曲线和方程的关系等解析几何的基础知识和基本思想方法,考查推理及运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•湖北)如图,双曲线
x2
a2
-
y2
b2
=1(a,b>0)的两顶点为A1,A2,虚轴两端点为B1,B2,两焦点为F1,F2.若以A1A2为直径的圆内切于菱形F1B1F2B2,切点分别为A,B,C,D.则:
(Ⅰ)双曲线的离心率e=
5
+1
2
5
+1
2

(Ⅱ)菱形F1B1F2B2的面积S1与矩形ABCD的面积S2的比值
S1
S2
=
5
+2
2
5
+2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•天津模拟)如图,椭圆
x2
a2
+
y2
b2
=1(a>b>0)与一等轴双曲线相交,M是其中一个交点,并且双曲线的顶点是该椭圆的焦点F1,F2,双曲线的焦点是椭圆的顶点A1,A2,△MF1F2的周长为4(
2
+1).设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D.
(Ⅰ)求椭圆和双曲线的标准方程;
(Ⅱ)设直线PF1、PF2的斜率分别为k1、k2,证明k1•k2=1;
(Ⅲ)是否存在常数λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,求λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,双曲线C:
x2
a2
-
y2
b2
=1
(a>0,b>0)的渐近线为l1,l2,离心率为
13
3
,P1∈l1,P2∈l2,且
OP1
OP2
=t
P2P
PP1
(λ>0),P在双曲线C右支上.
(1)若△P1OP2的面积为6,求t的值;
(2)t=5时,求a最大时双曲线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点分别为F1、F2,以F1F2为直径的圆O与双曲线交于A、B、C、D四点,若AB交y轴于点H,圆O与y轴正半轴相交于点P,且
OH
=(3+2
3
HP

(1)若双曲线的焦距为2,求双曲线的方程;
(2)求双曲线的离心率.

查看答案和解析>>

同步练习册答案