精英家教网 > 高中数学 > 题目详情

【题目】下列各组函数中,表示同一函数的是( )
A.
与g(x)=x﹣1
B.f(x)=2|x|与
C.

D.

【答案】B
【解析】解:对于A: 的定义域是{x|x≠﹣1},而g(x)=x﹣1的定义域是R,定义域不相同,∴不是同一函数;
对于B:f(x)=2|x|的定义域是R, =2|x|的定义域是R,定义域相同,对应关系也相同,∴是同一函数;
对于C: =|x|的定义域是R,而 的定义域是{x|x≥0},定义域不相同,对应关系也不相同,∴不是同一函数;
对于D: 的定义域是{x|﹣1≤x≤1},而 的定义域是{x|1≤x或x≤﹣1},定义域不相同,∴不是同一函数;
故选B.
【考点精析】根据题目的已知条件,利用判断两个函数是否为同一函数的相关知识可以得到问题的答案,需要掌握只有定义域和对应法则二者完全相同的函数才是同一函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设点到坐标原点的距离和它到直线的距离之比是一个常数

(1)求点的轨迹;

(2)若时得到的曲线是,将曲线向左平移一个单位长度后得到曲线,过点的直线与曲线交于不同的两点,过的直线分别交曲线于点,设 ,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆.

(1)若椭圆的右焦点坐标为,求的值;

(2)由椭圆上不同三点构成三角形称为椭圆的内接三角形.若以为直角顶点的椭圆的内接等腰直角三角形恰有三个,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)已知椭圆的离心率为,椭圆的短轴端点与双曲线的焦点重合,过点且不垂直于轴的直线与椭圆相交于两点.

1)求椭圆的方程;

2)求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于无穷数列,记,若数列满足:“存在,使得只要),必有”,则称数列具有性质.

(Ⅰ)若数列满足判断数列是否具有性质?是否具有性质

(Ⅱ)求证:“是有限集”是“数列具有性质”的必要不充分条件;

(Ⅲ)已知是各项为正整数的数列,且既具有性质,又具有性质,求证:存在整数,使得是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 底面为菱形,平面,点在棱上.

(Ⅰ)求证:直线平面

(Ⅱ)若平面,求证:

(Ⅲ)是否存在点,使得四面体的体积等于四面体的体积的?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点是菱形所在平面外一点, 是等边三角形, 的中点.

(Ⅰ)求证: 平面

(Ⅱ)求证:平面平面

(Ⅲ)求直线与平面的所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体中, 为棱上一动点, 为底面上一动点, 的中点,若点都运动时,点构成的点集是一个空间几何体,则这个几何体是

A. 棱柱 B. 棱台 C. 棱锥 D. 球的一部分

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于的方程有两个不等实根,则实数的取值范围是__________

查看答案和解析>>

同步练习册答案