精英家教网 > 高中数学 > 题目详情

已知函数f(x)=-x2+8xg(x)=6ln xm.

(1)求f(x)在区间[tt+1]上的最大值h(t);

(2)是否存在实数m使得yf(x)的图象与yg(x)的图象有且只有三个不同的交点?若存在,求出m的取值范围;若不存在,说明理由.

 

【答案】

解:(1)f(x)=-x2+8x=-(x-4)2+16.

t+1<4,即t<3时,f(x)在[tt+1]上单调递增,h(t)=f(t+1)=-(t+1)2+8(t+1)=-t2+6t+7;当t≤4≤t+1即3≤t≤4时,h(t)=f(4)=16;

t>4时,f(x)在[tt+1]上单调递减,

h(t)=f(t)=-t2+8t.

综上,h(t)=

(2)函数yf(x)的图象与yg(x)的图象有且只有三个不同的交点,即函数Φ(x)=g(x)-f(x)的图象与x轴的正半轴有且只有三个不同的交点.

Φ(x)=x2-8x+6ln xm

Φ′(x)=2x-8+

 (x>0)

x∈(0, 1)时,Φ′(x)>0,Φ(x)是增函数;

x∈(1,3)时,Φ′(x)<0,Φ(x)是减函数;

x∈(3,+∞)时,Φ′(x)>0,Φ(x)是增函数;

x=1或x=3时,Φ′(x)=0.

Φ(x)极大值Φ(1)=m-7,

Φ(x)极小值Φ(3)=m+6ln 3-15.

∵当x充分接近0时,Φ(x)<0,当x充分大时,Φ(x)>0

∴要使Φ(x)的图象与x轴正半轴有三个不同的交点,必须且只须

即7<m<15-6ln 3.

所以存在实数m,使得函数yf(x)与yg(x)的图象有且只有三个不同的交点,m的取值范围为(7,15-6ln 3)

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源:2011届南京市金陵中学高三第四次模拟考试数学试题 题型:解答题

(本小题满分16分)已知函数f(x)=ax2-(2a+1)x+2lnx(a为正数).
(1) 若曲线y=f(x)在x=1和x=3处的切线互相平行,求a的值;
(2) 求f(x)的单调区间;
(3) 设g(x)=x2-2x,若对任意的x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省杭州市高三上学期开学考试数学卷 题型:选择题

已知函数f(x)=4x2mx+5在区间[-2,+∞)上是增函数,则f(1)的范围是(  )

A.f(1)≥25         B.f(1)=25     C.f(1)≤25         D.f(1)>25

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖南省高三第三次月考文科数学卷 题型:选择题

已知函数f(x)=若f(a)=,则a=                 (  )

A.-1                      B.

C.-1或                 D.1或-

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖北省天门市高三天5月模拟文科数学试题 题型:填空题

  已知函数f(x)=ax2+bx+c(a≠0),且f(x)=x无实根,下列命题中:

    (1)方程f [f (x)]=x一定无实根;

    (2)若a>0,则不等式f [f (x)]>x对一切实数x都成立;

    (3)若a<0,则必存在实数x0,使f [f (x0)]>x0;

    (4)若a+b+c=0,则不等式f [f (x)]<x对一切x都成立;

    正确的序号有          .              

 

查看答案和解析>>

科目:高中数学 来源:2012届江西省南昌市高三第一次模拟测试卷理科数学试卷 题型:选择题

已知函数f(x)=|lg(x-1)|-()x有两个零点x1x2,则有

A.x1x2<1    B.x1x2<x1x2

C.x1x2x1x2    D.x1x2>x1x2

 

 

查看答案和解析>>

同步练习册答案