【题目】在平面直角坐标系中,已知函数的图像与直线相切,其中是自然对数的底数.
(1)求实数的值;
(2)设函数在区间内有两个极值点.
①求实数的取值范围;
②设函数的极大值和极小值的差为,求实数的取值范围 .
科目:高中数学 来源: 题型:
【题目】设集合A={x|x2-3x+2=0},B={x|x2+(a-1)x+a2-5=0}.
(1)若A∩B={2},求实数a的值;
(2)若A∪B=A,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某县经济最近十年稳定发展,经济总量逐年上升,下表是给出的部分统计数据:
序号 | 2 | 3 | 4 | 5 | |
年份 | 2008 | 2010 | 2012 | 2014 | 2016 |
经济总量(亿元) | 236 | 246 | 257 | 275 | 286 |
(1)如上表所示,记序号为,请直接写出与的关系式;
(2)利用所给数据求经济总量与年份之间的回归直线方程;
(3)利用(2)中所求出的直线方程预测该县2018年的经济总量.
附:对于一组数据,
其回归直线的斜率和截距的最小二乘估计分别为:
,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,单位圆上存在两点,满足均与轴垂直,设与的面积之和记为.
若,求的值;
若对任意的,存在,使得成立,且实数使得数列为递增数列,其中求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=ax﹣(1+a2)x2 , 其中a>0,区间I={x|f(x)>0}
(1)求I的长度(注:区间(a,β)的长度定义为β﹣α);
(2)给定常数k∈(0,1),当1﹣k≤a≤1+k时,求I长度的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为1.80元,当用水超过4吨时,超过部分每吨3.00元,某月甲、乙两户共交水费y元,已知甲、乙两户该月用水量分别为5x吨、3x吨.
(1)求y关于x的函数;
(2)若甲、乙两户该月共交水费26.4元,分别求出甲、乙两户该月的用水量和水费.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a>0,b∈R,函数f(x)=4ax3﹣2bx﹣a+b.
(1)证明:当0≤x≤1时,
(i)函数f(x)的最大值为|2a﹣b|+a;
(ii)f(x)+|2a﹣b|+a≥0;
(2)若﹣1≤f(x)≤1对x∈[0,1]恒成立,求a+b的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com