精英家教网 > 高中数学 > 题目详情
7.已知?a∈[1,2),?x0∈(0,1],使得$ln{x_0}+{e^a}>\frac{{a{x_0}}}{2}+\frac{a}{2}+m$,则实数m的取值范围为(-∞,e-1).

分析 若?a∈[1,2),?x0∈(0,1],使得$ln{x_0}+{e^a}>\frac{{a{x_0}}}{2}+\frac{a}{2}+m$,则m小于函数f(x)=$lnx+{e}^{a}-\frac{a}{2}(x+1)$最大值的最小值,利用导数法求得答案.

解答 解:令f(x)=$lnx+{e}^{a}-\frac{a}{2}(x+1)$,
则f′(x)=$\frac{1}{x}$-$\frac{a}{2}$,
当a∈[1,2),x∈(0,1]时,f′(x)>0恒成立,
故f(x)在区间(0,1]上为增函数,
当x=1时,函数取最大值ea-a,
令g(a)=ea-a,则g′(a)=ea-1,
当a∈[1,2)时,g′(a)>0恒成立,
故g(a)在区间[1,2)上为增函数,
当a=1时,函数取最小值e-1,
若?a∈[1,2),?x0∈(0,1],使得$ln{x_0}+{e^a}>\frac{{a{x_0}}}{2}+\frac{a}{2}+m$,
即?a∈[1,2),?x0∈(0,1],使得$ln{x}_{0}+{e}^{a}-\frac{a}{2}{(x}_{0}+1)>m$成立,
故m<e-1,
故实数m的取值范围为:(-∞,e-1)
故答案为:(-∞,e-1).

点评 本题考查的知识点是导数在函数最值中的应用,转化思想,存在性问题和恒成立问题,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知对于任意实数x,二次函数f(x)=x2-4ax+2a+12(a∈R)的值都是非负的.
(1)求a的取值范围;
(2)求函数g(a)=(a+1)(|a-1|+2)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,角A,B,C所对的三边分别是a,b,c,已知$A={30°},c=2\sqrt{3},b=2$,则△ABC的面积为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的图象的一个最高点的坐标为($\frac{π}{3}$,3),且当x1+x2=$\frac{7π}{6}$时,满足f(x1)=-f(x2).
(1)当函数f(x)的周期最大时,求f(x)的单调递增区间;
(2)在(1)的条件下,将函数f(x)的图象上每个点的横坐标缩短为原来的$\frac{1}{2}$倍,纵坐标不变,再将所得函数图象向左平移$\frac{π}{12}$得到函数g(x)的图象,求函数g(x)在[$\frac{π}{24}$,$\frac{7π}{24}$]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知△ABC中,BC=2,G为△ABC的重心,且满足AG⊥BG,则△ABC 的面积的最大值为$\frac{6}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.斜率为1的动直线L与椭圆$\frac{x^2}{4}+\frac{y^2}{2}=1$交于P,Q两点,M是L上的点,且满足|MP|•|MQ|=2,求点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=lnx-x2+x+2.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若a>0,求f(x)在区间(0,a]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数$f(x)={x^3}-{x^2}+({2\sqrt{2}-3})x+3-2\sqrt{2}$,f(x)与x轴依次交于点A、B、C,点P为f(x)图象上的动点,分别以A、B、C,P为切点作函数f(x)图象的切线.
(1)点P处切线斜率最小值为2$\sqrt{2}$-$\frac{10}{3}$
(2)点A、B、C处切线斜率倒数和为0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设$\overrightarrow a,\overrightarrow b$是两个非零向量,且$|\overrightarrow a|=|\overrightarrow b|$=$|\overrightarrow a+\overrightarrow b|=2$,则向量$\vec b•(\vec a-\vec b)$为-6.

查看答案和解析>>

同步练习册答案