精英家教网 > 高中数学 > 题目详情

【题目】如果函数f(x)=(x﹣1)2+1定义在区间[t,t+1]上,求f(x)的最小值.

【答案】解:函数f(x)=(x﹣1)2+1对称轴方程为x=1,
顶点坐标为(1,1),图象开口向上,
若顶点横坐标在区间[t,t+1]左侧时,
有1<t,此时,当x=t时,函数取得最小值
若顶点横坐标在区间[t,t+1]上时,
有t≤1≤t+1,即0≤t≤1.当x=1时,函数取得最小值f(x)min=f(1)=1.
若顶点横坐标在区间[t,t+1]右侧时,
有t+1<1,即t<0.当x=t+1时,函数取得最小值
综上讨论,
【解析】根据二次函数的大小求出函数的对称轴,通过讨论t的范围,求出函数的最小值即可.
【考点精析】认真审题,首先需要了解函数的最大(小)值与导数(求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设命题:实数满足,其中;命题:实数满足.

(1)若,且为真,求实数的取值范围;

(2)若的充分不必要条件,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x||x+1|<1},B={x|y= ,y∈R},则A∩RB=(
A.(﹣2,1)
B.(﹣2,﹣1]
C.(﹣1,0)
D.[﹣1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)满足f(0)=2和f(x+1)﹣f(x)=2x﹣1对任意实数x都成立.
(1)求函数f(x)的解析式;
(2)当t∈[﹣1,3]时,求y=f(2t)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=kx,g(x)=
(1)求函数g(x)= 的单调区间;
(2)若不等式f(x)≥g(x)在区间(0,+∞)上恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos(2x﹣ )+2sin(x﹣ )cos(x﹣ ).
(1)求函数f(x)的最小正周期和图象的对称轴方程.
(2)求函数f(x)在区间[﹣ ]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,抛物线的焦点均在轴上, 的中心和的顶点均为原点,从每条曲线上各取两个点,其坐标分别是

(1)求 的标准方程;

(2)是否存在直线满足条件:①过的焦点;②与交于不同的两点且满足?若存在,求出直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,下列结论中不正确的是( )

A. 的图象关于点中心对称

B. 的图象关于直线对称

C. 的最大值为

D. 既是奇函数,又是周期函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知幂函数f(x)满足:对任意x1x2∈R,当且仅当x1=x2时,有f(x1)=f(x2).则f(﹣1)+f(0)+f(1)的值为

查看答案和解析>>

同步练习册答案