精英家教网 > 高中数学 > 题目详情

【题目】如图,在菱形中,平面是线段的中点,.

(1)证明:平面

(2)求多面体的表面积.

【答案】(1)证明见解析;(2).

【解析】分析:(1)的交点为,连接.可证明平面,由三角形中位线定理可得从而得平面进而由面面平行的判定定理可得平面平面平面平面;(2)利用勾股定理计算各棱长,判断各面的形状,利用面积公式计算各表面的面积,从而可得结果.

详解(1)设的交点为,连接.

平面,∴平面.

是线段的中点,∴的中位线,∴.

平面,∴平面.

,∴平面平面

平面,∴平面.

(2)连接,则由菱形可得.

平面,平面,

:∴,又,

平面,又平面,

p>.

,且,

∴四边形为正方形,,

,∴,

.

是直角三角形,

.

∵四边形为菱形,

,,

又∵,∴.

∴多面体的表面积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某工厂生产一种汽车的元件,该元件是经过三道工序加工而成的,三道工序加工的元件合格率分别为.已知每道工序的加工都相互独立,三道工序加工都合格的元件为一等品;恰有两道工序加工合格的元件为二等品;其它的为废品,不进入市场.

(Ⅰ)生产一个元件,求该元件为二等品的概率;

(Ⅱ)若从该工厂生产的这种元件中任意取出3个元件进行检测,求至少有2个元件是一等品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,DAC的中点,四边形BDEF是菱形,平面平面ABC

若点M是线段BF的中点,证明:平面AMC

求平面AEF与平面BCF所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

时,讨论的导函数在区间上零点的个数;

时,函数的图象恒在图象上方,求正整数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数对任意,都有,且时,.

(1)求证是奇函数;

(2)求上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知梯形中,,四边形为矩形,,平面平面

Ⅰ)求证:平面

Ⅱ)求平面与平面所成锐二面角的余弦值;

Ⅲ)在线段上是否存在点,使得直线与平面所成角的正弦值为,若存在,求出线段的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为(为参数),以原点为极点,轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

(1)求曲线的普通方程与曲线直角坐标方程;

(2)设为曲线上的动点,求点上点的距离的最小值,并求此时点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD为正方形,PD平面ABCD,∠DPC=30°,AFPC于点FFECD,交PD于点E.

(1)证明:CF⊥平面ADF

(2)求二面角DAFE的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】图1是由矩形和菱形组成的一个平面图形,其中,将其沿折起使得重合,连结,如图2.

(1)证明图2中的四点共面,且平面平面

(2)求图2中的四边形的面积.

查看答案和解析>>

同步练习册答案