精英家教网 > 高中数学 > 题目详情

【题目】如图,已知椭圆过点,离心率为分别是椭圆的左、右顶点,过右焦点且斜率为的直线与椭圆相交于两点.

1)求椭圆的标准方程;

2)记的面积分别为,若,求的值;

3)记直线的斜率分别为,求的值.

【答案】1;(2;(3

【解析】

1)根据椭圆所过点、离心率和椭圆关系可构造方程组求得结果;

(2)利用面积比可求得,根据向量坐标运算,利用点坐标表示出点坐标,代入椭圆方程可求得点坐标,进而利用两点连线斜率公式求得结果;

(3)将直线方程与椭圆方程联立得到韦达定理的形式,利用两点连线斜率公式表示出所求的后,代入韦达定理的结论,整理可得结果.

1)设椭圆的焦距为

椭圆过点,离心率为,解得:

椭圆的标准方程为:.

2)设点

,由(1)可知:

,即

,即

在椭圆上,,解得:

直线的斜率.

3)由题意得:直线的方程为

消去得:

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数为实常数且).

Ⅰ)当时;

,判断函数的奇偶性,并说明理由;

求证:函数上是增函数;

Ⅱ)设集合,若,求的取值范围(用表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别是,点是椭圆上除长轴端点外的任一点,连接,设的内角平分线的长轴于点

(Ⅰ)求实数的取值范围;

(Ⅱ)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有甲,乙两种不透明充气包装的袋装零食,每袋零食甲随机附赠玩具中的一个,每袋零食乙从玩具中随机附赠一个.记事件:一次性购买袋零食甲后集齐玩具;事件:一次性购买袋零食乙后集齐玩具.

1)求概率

2)已知,其中为常数,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,已知等边的边长为3,点分别是边上的点,且.如图2,将沿折起到的位置.

1)求证:平面平面

2)给出三个条件:①;②二面角大小为;③到平面的距离为.在中任选一个,补充在下面问题的条件中,并作答:

在线段上是否存在一点,使三棱锥的体积为,若存在,求出的值;若不存在,请说明理由.

注:如果多个条件分别解答,按第一个解答给分。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABCA1B1C1中,AB⊥侧面BCC1B1ACAB1

1)求证:平面ABC1⊥平面AB1C

2)若ABBC2,∠BCC160°,求二面角BAC1B1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,三棱锥SABC中,△ABC与△SBC都是边长为1的正三角形,二面角ABCS的大小为,若SABC四点都在球O的表面上,则球O的表面积为(

A.πB.πC.πD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为正项数列的前项和,满足.

1)求的通项公式;

2)若不等式对任意正整数都成立,求实数的取值范围;

3)设(其中是自然对数的底数),求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,二面角中,,射线分别在平面内,点A在平面内的射影恰好是点B,设二面角与平面所成角、与平面所成角的大小分别为,则( )

A.B.C.D.

查看答案和解析>>

同步练习册答案