精英家教网 > 高中数学 > 题目详情

()(本小题满分12分)

等比数列{}的前n项和为,已知对任意的,点,均在函数均为常数)的图像上。

(1)求r的值;

(11)当b=2时,记 ,证明:对任意的 ,不等式成立。

(1)

(11)证明见解析。


解析:

因为对任意的,点,均在函数均为常数的图像上.所以得,当时,,当时,,又因为{}为等比数列,所以,公比为,

(2)当b=2时,,   

,所以

下面用数学归纳法证明不等式成立。

①当时,左边=,右边=,因为,所以不等式成立.

②假设当时不等式成立,即成立.则当时,左边=

所以当时,不等式也成立.

由①、②可得不等式恒成立。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知关于的一元二次函数  (Ⅰ)设集合P={1,2, 3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为,求函数在区间[上是增函数的概率;(Ⅱ)设点()是区域内的随机点,求函数上是增函数的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分) 一几何体的三视图如图所示,,A1A=,AB=,AC=2,A1C1=1,在线段上且=.

(I)证明:平面⊥平面

(II)求二面角的余弦值.

查看答案和解析>>

同步练习册答案