精英家教网 > 高中数学 > 题目详情
已知椭圆的左焦点为与过原点的直线相交于两点,连接,若,则椭圆的离心率
A.B.C.D.
A

试题分析:由已知条件,利用余弦定理求出|AF|,设F′为椭圆的右焦点,连接BF′,AF′.根据对称性可得四边形AFBF′是矩形,由此能求出离心率e.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率,长轴的左右端点分别为
(1)求椭圆的方程;
(2)设动直线与曲线有且只有一个公共点,且与直线相交于点.问在轴上是否存在定点,使得以为直径的圆恒过定点,若存在,求出点坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的右焦点为FA为短轴的一个端点,且的面积为1(其中为坐标原点).
(1)求椭圆的方程;
(2)若CD分别是椭圆长轴的左、右端点,动点M满足,连结CM,交椭圆于点,证明:为定值;
(3)在(2)的条件下,试问轴上是否存在异于点C的定点Q,使得以MP为直径的圆恒过直线DPMQ的交点,若存在,求出点Q的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,其长轴长与短轴长的和等于6.

(1)求椭圆的方程;
(2)如图,设椭圆的上、下顶点分别为是椭圆上异于的任意一点,直线分别交轴于点,若直线与过点的圆相切,切点为.证明:线段的长为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知(4,2)是直线l被椭圆所截得的线段的中点,则l的方程是(    )
A.x+2y+8=0
B.x+2y-8=0
C.x-2y-8=0
D.x-2y+8=0

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的中心在原点,焦点在轴上,且长轴长为12,离心率为,则椭圆的方程是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

与椭圆有公共焦点,且离心率的双曲线方程是(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,已知定点A(-4,0)、B(4,0),动点P与A、B连线的斜率之积为-.
(1)求点P的轨迹方程;
(2)设点P的轨迹与y轴负半轴交于点C.半径为r的圆M的圆心M在线段AC的垂直平分线上,且在y轴右侧,圆M被y轴截得的弦长为r.
(ⅰ)求圆M的方程;
(ⅱ)当r变化时,是否存在定直线l与动圆M均相切?如果存在,求出定直线l的方程;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的方程C:),若椭圆的离心率,则的取值范围是.

查看答案和解析>>

同步练习册答案