2£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$£¬$\overrightarrow{b}$Âú×ã$\overrightarrow{a}$=£¨-2sinx£¬$\sqrt{3}$£¨cosx+sinx£©£©£¬$\overrightarrow{b}$=£¨cosx£¬cosx-sinx£©£¬º¯Êýf£¨x£©=$\overrightarrow{a}$•$\overrightarrow{b}$£¨x¡ÊR£©£®
£¨¢ñ£©Çóf£¨x£©ÔÚx¡Ê[-$\frac{¦Ð}{2}$£¬0]ʱµÄÖµÓò£»
£¨¢ò£©ÒÑÖªÊýÁÐan=n2f£¨$\frac{n¦Ð}{2}$-$\frac{11¦Ð}{24}$£©£¨n¡ÊN+£©£¬Çó{an}µÄÇ°2nÏîºÍS2n£®

·ÖÎö £¨¢ñ£©ÀûÓÃƽÃæÏòÁ¿ÊýÁ¿»ýµÄÔËË㣬Èý½Çº¯ÊýÖеĺãµÈ±ä»»Ó¦ÓÿÉÇó½âÎöʽf£¨x£©=2sin£¨2x+$\frac{2¦Ð}{3}$£©£¬ÓÉx¡Ê[-$\frac{¦Ð}{2}$£¬0]£¬¿ÉÇó2x+$\frac{2¦Ð}{3}$µÄ·¶Î§£¬ÀûÓÃÕýÏÒº¯ÊýµÄͼÏóºÍÐÔÖʼ´¿ÉÇóÖµÓò£®
£¨¢ò£©ÀûÓ㨢ñ£©¿ÉµÃan=2n2sin£¨n$¦Ð-\frac{¦Ð}{4}$£©£¬¿ÉÇóµÃS2n=$\sqrt{2}$[12-22+32-42+¡­+£¨2n-1£©2-£¨2n£©2]£¬ÀûÓã¨2n-1£©2-£¨2n£©2=-4n+1£¬ÓɵȲîÊýÁеÄÇóºÍ¹«Ê½¼´¿ÉµÃ½â£®

½â´ð ½â£º£¨¢ñ£©f£¨x£©=$\overrightarrow{a}$•$\overrightarrow{b}$=-sin2x+$\sqrt{3}$cos2x=2sin£¨2x+$\frac{2¦Ð}{3}$£©£¬
µ±x¡Ê[-$\frac{¦Ð}{2}$£¬0]ʱ£¬2x+$\frac{2¦Ð}{3}$¡Ê[-$\frac{¦Ð}{3}$£¬$\frac{2¦Ð}{3}$]£¬
¿ÉµÃ£º2sin£¨2x+$\frac{2¦Ð}{3}$£©¡Ê[-$\sqrt{3}$£¬2]¡­4·Ö
£¨¢ò£©¡ßan=n2f£¨$\frac{n¦Ð}{2}$-$\frac{11¦Ð}{24}$£©=2n2sin[2£¨$\frac{n¦Ð}{2}$-$\frac{11¦Ð}{24}$£©+$\frac{2¦Ð}{3}$]=2n2sin£¨n$¦Ð-\frac{¦Ð}{4}$£©£¬
¡àS2n=$\sqrt{2}$[12-22+32-42+¡­+£¨2n-1£©2-£¨2n£©2]£¬
Ó֡ߣ¨2n-1£©2-£¨2n£©2=-4n+1£¬
¡à½âµÃ£ºS2n=$\sqrt{2}$¡Á$\frac{£¨-3-4n+1£©n}{2}$=$\sqrt{2}$£¨-2n2-n£©¡­10·Ö

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËƽÃæÏòÁ¿ÊýÁ¿»ýµÄÔËË㣬Èý½Çº¯ÊýÖеĺãµÈ±ä»»Ó¦Óã¬ÊýÁеÄÇóºÍ£¬ÕýÏÒº¯ÊýµÄͼÏóºÍÐÔÖÊ£¬ÊôÓÚ»ù±¾ÖªÊ¶µÄ¿¼²é£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÉèÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬µã$£¨{n£¬\frac{S_n}{n}}£©£¨{n¡Ê{N^*}}£©$ÔÚÖ±Ïß3x-y-1=0ÉÏ£¬Éècn=$\frac{4}{{{a_n}{a_{n+1}}}}$£¬TnÊÇÊýÁÐ{cn}µÄÇ°nÏîºÍ£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÇóʹµÃTn£¼$\frac{K}{9}$¶ÔËùÓеÄn¡ÊN*¶¼³ÉÁ¢µÄ×îСÕýÕûÊýK£»
£¨3£©ÊÇ·ñ´æÔÚÕýÕûÊým£¬n£¨1£¼m£¼n£©£¬Ê¹T1£¬Tm£¬Tn³ÉµÈ±ÈÊýÁУ¿Èô´æÔÚ£¬Çó³öËùÓÐm£¬nµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®Èô²»µÈʽax2-5x+1¡Ü0µÄ½â¼¯Îª$[\frac{1}{3}£¬\frac{1}{2}]$£¬ÔòaµÄֵΪ£¨¡¡¡¡£©
A£®$\frac{5}{6}$B£®6C£®$\frac{1}{6}$D£®5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖª$\overrightarrow a=£¨2cosx£¬sinx£©£¬\overrightarrow b=£¨sin£¨x+\frac{¦Ð}{3}£©£¬cosx-\sqrt{3}sinx£©£¬f£¨x£©=\overrightarrow a•\overrightarrow b$£®
£¨1£©Çóº¯Êýf£¨x£©µÄ×îСÕýÖÜÆÚ£»
£¨2£©Çóº¯Êýf£¨x£©µÄÖµÓò£»
£¨3£©Çóº¯Êýf£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®¹ØÓÚxµÄ·½³Ìx2+£¨a+2b£©x+3a+b+1=0µÄÁ½¸öʵ¸ù·Ö±ðÔÚÇø¼ä£¨-1£¬0£©ºÍ£¨0£¬1£©ÉÏ£¬Ôòa+bµÄÈ¡Öµ·¶Î§Îª£¨¡¡¡¡£©
A£®£¨-$\frac{3}{5}$£¬$\frac{1}{5}$£©B£®£¨-$\frac{2}{5}$£¬$\frac{1}{5}$£©C£®£¨-$\frac{3}{5}$£¬-$\frac{2}{5}$£©D£®£¨-$\frac{1}{5}$£¬$\frac{1}{5}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªÊýÁÐ{an}Âú×ãan+1=2an-1£¨n¡ÊN+£©£¬a1=2£®
£¨¢ñ£©ÇóÖ¤£ºÊýÁÐ{an-1}ΪµÈ±ÈÊýÁУ¬²¢ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©ÇóÊýÁÐ{nan}µÄÇ°nÏîºÍSn£¨n¡ÊN+£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÄܱíʾͼÖÐÒõÓ°²¿·ÖµÄ¶þÔªÒ»´Î²»µÈʽ×éÊÇ£¨¡¡¡¡£©
A£®$\left\{\begin{array}{l}{0¡Üy¡Ü1}\\{2x-y+2¡Ü0}\end{array}\right.$B£®$\left\{\begin{array}{l}{y¡Ü1}\\{2x-y+2¡Ü0}\end{array}\right.$
C£®$\left\{\begin{array}{l}{0¡Üy¡Ü1}\\{2x-y+2¡Ý0}\\{x¡Ü0}\end{array}\right.$D£®$\left\{\begin{array}{l}{y¡Ü1}\\{x¡Ü0}\\{2x-y+2¡Ü0}\end{array}\right.$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑÖªSnΪÊýÁÐ{an}µÄÇ°nÏîºÍ£¬ÇÒSn=1-$\frac{1}{{2}^{n}}$£¬Ôòa5µÈÓÚ£¨¡¡¡¡£©
A£®$\frac{1}{{2}^{5}}$B£®$\frac{1}{{2}^{4}}$C£®$\frac{1}{2}$D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÔÚÊýÁÐ{an}ÖУ¬ÒÑÖªa1=2£¬an+1=3an+¦Ën-1£¬n¡ÊN*£¬¦ËΪ³£Êý£®
£¨1£©ÈôÊýÁÐ{an+n}ÊǵȱÈÊýÁУ¬ÇóʵÊý¦ËµÄÖµ£»
£¨2£©ÔÚ£¨1£©µÄÌõ¼þÏ£¬ÇóÊýÁÐ{an}µÄÇ°nÏîºÍSn£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸