精英家教网 > 高中数学 > 题目详情

【题目】已知α,β∈( ,π),且sinα+cosα=a,cos(β﹣α)=
(1)若a= ,求sinαcosα+tanα﹣ 的值;
(2)若a= ,求sinβ的值.

【答案】
(1)解:∵

∴平方得

=


(2)解:令sinα﹣cosα=t,

∴sinα>0,cosα<0,

∴t>0,

解得 ,又

,即


【解析】(1)利用已知条件求出正弦函数与余弦函数的乘积,利用同角三角函数的基本关系式化简求解即可.(2)利用已知条件求出正弦函数与余弦函数值,然后利用两角和与差的三角函数化简求解即可.
【考点精析】本题主要考查了同角三角函数基本关系的运用的相关知识点,需要掌握同角三角函数的基本关系:;(3) 倒数关系:才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若变量x,y满足约束条件 ,且z=2x+y的最大值和最小值分别为m和n,则m﹣n=(
A.5
B.6
C.7
D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市上年度电价为0.80元/千瓦时,年用电量为a千瓦时.本年度计划将电价降到0.55元/千瓦时~0.75元/千瓦时之间,而居民用户期望电价为0.40元/千瓦时(该市电力成本价为0.30元/千瓦时)经测算,下调电价后,该城市新增用电量与实际电价和用户期望电价之差成反比,比例系数为0.2a.试问当地电价最低为多少时,可保证电力部门的收益比上年度至少增加20%.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某网站针对2014年中国好声音歌手A,B,C三人进行网上投票,结果如下:

观众年龄

支持A

支持B

支持C

20岁以下

200

400

800

20岁以上(含20岁)

100

100

400

(1)在所有参与该活动的人中,用分层抽样的方法抽取n人,其中有6人支持A,求n的值.
(2)在支持C的人中,用分层抽样的方法抽取6人作为一个总体,从这6人中任意选取2人,求恰有1人在20岁以下的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,若输出的i的值为8,则判断框内实数a的取值范围是 . (写成区间或集合的形式)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知α,β为锐角, =cos(α+β).
(1)求tan(α+β)cotα的值;
(2)求tanβ的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)求函数的最小正周期和单调递增区间;

2)当时,的最大值为2,求的值,并求出的对称轴方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数f(x)给出定义:
设f′(x)是函数y=f(x)的导数,f″(x)是函数f′(x)的导数,若方程f″(x)=0有实数解x0 , 则称点(x0 , f(x0))为函数y=f(x)的“拐点”.
某同学经过探究发现:任何一个三次函数f(x)=ax3+bx2+cx+d(a≠0)都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.给定函数 ,请你根据上面探究结果,计算
=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某少数民族的刺绣有着悠久的历史,如图(1),(2),(3),(4)为最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.
(1)求出f(5)的值.
(2)利用合情推理的“归纳推理思想”,归纳出f(n+1)与f(n)之间的关系式,并根据你得到的关系式求出f(n)的表达式.

查看答案和解析>>

同步练习册答案