精英家教网 > 高中数学 > 题目详情
12.如图,正方体ABCD-A1B1C1D1中,AB=4,P、Q分别是棱BC与B1C1的中点.
(1)求异面直线D1P和A1Q所成角的大小;
(2)求以A1、D1、P、Q四点为四个顶点的四面体的体积.

分析 (1)以D为原点,DA,DC,DD1为x,y,z轴,建立空间直角坐标系,利用向量法能求出异面直线D1P和A1Q所成角.
(2)以A1、D1、P、Q四点为四个顶点的四面体的体积V=$\frac{1}{3}×{S}_{△{A}_{1}{D}_{1}Q}×PQ$.

解答 解:(1)以D为原点,DA,DC,DD1为x,y,z轴,建立空间直角坐标系,
则D1(0,0,4),P(2,4,0),A1(4,0,4),Q(2,4,4),
$\overrightarrow{{D}_{1}P}$=(2,4,-4),$\overrightarrow{{A}_{1}Q}$=(-2,4,0),
设异面直线D1P和A1Q所成角为θ,
则cosθ=$\frac{|\overrightarrow{{D}_{1}P}•\overrightarrow{{A}_{1}Q}|}{|\overrightarrow{{D}_{1}P}|•|\overrightarrow{{A}_{1}Q}|}$=$\frac{12}{\sqrt{36}•\sqrt{20}}$=$\frac{\sqrt{5}}{5}$,
∴θ=arccoa$\frac{\sqrt{5}}{5}$.
∴异面直线D1P和A1Q所成角为arccos$\frac{\sqrt{5}}{5}$.
(2)∵${S}_{△{A}_{1}{D}_{1}Q}$=$\frac{1}{2}×4×4$=8,PQ⊥平面A1D1Q,且PQ=4,
∴以A1、D1、P、Q四点为四个顶点的四面体的体积:
V=$\frac{1}{3}×{S}_{△{A}_{1}{D}_{1}Q}×PQ$=$\frac{1}{3}×8×4$=$\frac{32}{3}$.

点评 本题考查异面直线所成角的求法,考查四面体的体积的求法,是中档题,考查推理论证能力、运算求解能力,考查转化化归思想、数形结合思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.采取系统抽样的方法从1000名学生中抽出20名学生,将这1000名学生随机编号000~999号并分组:第一组000~049号,第二组050~099号,…,第二十组950~999号,若在第三组中抽得号码为122的学生,则在第十八组中抽得号码为:872的学生.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.甲抛掷均匀硬币2017次,乙抛掷均匀硬币2016次,下列四个随机事件的概率是0.5的是(  )
①甲抛出正面次数比乙抛出正面次数多;
②甲抛出反面次数比乙抛出正面次数少;
③甲抛出反面次数比甲抛出正面次数多;
④乙抛出正面次数与乙抛出反面次数一样多.
A.①②B.①③C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.全世界越来越关注环境保护问题,某监测站点于2016年8月某日起连续n天监测空气质量指数(AQI),数据统计如下:
空气质量指数(μg/m30-5051-100101-150151-200201-250
空气质量等级空气优空气良轻度污染中度污染重度污染
天数2040m105
(1)根据所给统计表和频率分布直方图中的信息求出n,m的值,并完成頻率分布直方图:

(2)由頻率分布直方图,求该组数据的平均数与中位数;
(3)在空气质量指数分别为51-100和151-200的监测数据中,用分层抽样的方法抽取5天,从中任意选取2天,求事件A“两天空气都为良”发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知扇形的面积为4cm2,扇形的圆心角为2弧度,则扇形的弧长为4cm.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若存在t∈R与正数m,使F(t-m)=F(t+m)成立,则称“函数F(x)在x=t处存在距离为2m的对称点”,设f(x)=$\frac{{x}^{2}+λ}{x}$(x>0),若对于任意t∈($\sqrt{2}$,$\sqrt{6}$),总存在正数m,使得“函数f(x)在x=t处存在距离为2m的对称点”,则实数λ的取值范围是(  )
A.(0,2]B.(1,2]C.[1,2]D.[1,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数y=f(x)的图象在点(-1,f(-1))处的切线方程是x+y-3=0,则f(-1)+f′(-1)的值是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知椭圆$\frac{x^2}{16}+\frac{y^2}{12+m}=1的离心率e=\frac{{\sqrt{2}}}{2}$实数m为(  )
A.-4或16B.20C.-4或20D.-4

查看答案和解析>>

科目:高中数学 来源:2015-2016学年吉林省高一下学期期末联考数学试卷(解析版) 题型:解答题

如图,在直三棱柱中,,点的中点.

求证:(1)

(2)平面

查看答案和解析>>

同步练习册答案