精英家教网 > 高中数学 > 题目详情
给出下列四个命题:
①若z∈C,|z|2=z2,则z∈R;        ②若z∈C,
.
z
=-z,则z是纯虚数;
③若z∈C,|z|2=zi,则z=0或z=i;    ④若z1,z2∈C,|z1+z2|=|z1-z2|则z1z2=0.
其中真命题的个数为
 
分析:设z=a+bi,根据已知中的条件,将z=a+bi代入,解关于a,b的方程,求出满足条件的a,b的值,可以判断出①②③的真假,举出反例说明,z1z2≠0时,|z1+z2|=|z1-z2|也可能成立,即可判断④的对错,进而得到答案.
解答:解:若z∈C,令z=a+bi,则|z|2=a2+b2,z2=a2-b2+2abi,若|z|2=z2,则b=0,此时z为实数,故①正确;
若z∈C,令z=a+bi,则
.
z
=-z时,b=0,则z是实数,故②错误;
若z∈C,令z=a+bi,则|z|2=a2+b2=ai-b,则a=0,b=0或b=-1,即z=0或z=-i,故③错误;
若z1,z2∈C,令z1=1+i,z2=1-i,|z1+z2|=|z1-z2|,则z1z2≠0,故④错误;
故真命题的个数为1个
故答案为1个
点评:本题考查的知识点是复数的基本概念,其中根据复数模的计算方法,及复数的基本运算法则,将z=a+bi代入,解关于a,b的方程,求出满足条件的a,b的值,再判断命题的真假是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

12、已知a、b是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题:
①若a⊥α,a⊥β,则α∥β;
②若α⊥γ,β⊥γ,则α∥β;
③若α∥β,a?α,b?β,则a∥b;
④若α∥β,α∩γ=a,β∩γ=b,则a∥b.
其中正确命题的序号有
①④

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①函数y=
1
x
的单调减区间是(-∞,0)∪(0,+∞);
②函数y=x2-4x+6,当x∈[1,4]时,函数的值域为[3,6];
③函数y=3(x-1)2的图象可由y=3x2的图象向右平移1个单位得到;
④若函数f(x)的定义域为[0,2],则函数f(2x)的定义域为[0,1];
⑤若A={s|s=x2+1},B={y|x=
y-1
}
,则A∩B=A.
其中正确命题的序号是
③④⑤
③④⑤
.(填上所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

将边长为2,锐角为60°的菱形ABCD沿较短对角线BD折成二面角A-BD-C,点E,F分别为AC,BD的中点,给出下列四个命题:
①EF∥AB;②直线EF是异面直线AC与BD的公垂线;③当二面角A-BD-C是直二面角时,AC与BD间的距离为
6
2
;④AC垂直于截面BDE.
其中正确的是
②③④
②③④
(将正确命题的序号全填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题,其中正确的命题的个数为(  )
①命题“?x0∈R,2x0≤0”的否定是“?x∈R,2x>0”;
log2sin
π
12
+log2cos
π
12
=-2;
③函数y=tan
x
2
的对称中心为(kπ,0),k∈Z;
④[cos(3-2x)]=-2sin(3-2x)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①函数y=ax(a>0且a≠1)与函数y=logaax(a>0且a≠1)的定义域相同;
②函数y=x3与y=3x的值域相同;
③函数y=
1
2
+
1
2x-1
y=
(1+2x)2
x•2x
都是奇函数;
④函数y=(x-1)2与y=2x-1在区间[0,+∞)上都是增函数,其中正确命题的序号是(  )

查看答案和解析>>

同步练习册答案