精英家教网 > 高中数学 > 题目详情

【题目】设函数.

(1)讨论的单调性;

(2)当时,,求的取值范围.

【答案】(1)在(-∞,-1-),(-1+,+∞)单调递减,在(-1-,-1+)单调递增(2)[1,+∞)

【解析】试题分析:(1)先求函数导数,再求导函数零点,列表分析导函数符号确定单调区间;(2)对分类讨论,当a≥1时,,满足条件;当时,取,当0<a<1时,取.

试题解析: 解(1)f ’(x)=(1-2x-x2)ex

f’(x)=0得x=-1-x=-1+

x∈(-∞,-1-)时,f’(x)<0;当x∈(-1-,-1+)时,f’(x)>0;当x∈(-1-,+∞)时,f’(x)<0

所以f(x)在(-∞,-1-),(-1+,+∞)单调递减,在(-1-,-1+)单调递增

(2) f (x)=(1+x)(1-xex

a≥1时,设函数h(x)=(1-xexh’(x)= -xex<0(x>0),因此h(x)在[0,+∞)单调递减,而h(0)=1,

h(x)≤1,所以

f(x)=(x+1)h(x)≤x+1≤ax+1

当0<a<1时,设函数gx)=ex-x-1,g’(x)=ex-1>0(x>0),所以gx)在在[0,+∞)单调递增,而g(0)=0,故exx+1

当0<x<1,,取

综上,a的取值范围[1,+∞)

点睛:利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】ABC的内角ABC的对边分别为abc,已知△ABC的面积为

(1)求sinBsinC;

(2)若6cosBcosC=1,a=3,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在平面直角坐标系xOy中,设椭圆E: =1(a>b>0),其中b= a,F为椭圆的右焦点,P(1,1)为椭圆E内一点,PF⊥x轴.

(1)求椭圆E的方程;
(2)过P点作斜率为k1 , k2的两条直线分别与椭圆交于点A,C和B,D.若满足|AP||PC|=|BP||DP|,问k1+k2是否为定值?若是,请求出此定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设向量 =(4cosα,sinα), =(sinβ,4cosβ), =(cosβ,﹣4sinβ)
(1)若 ﹣2 垂直,求tan(α+β)的值;
(2)若β∈(﹣ ],求| |的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 对一切正整数n,点Pn(n,Sn)都在函数f(x)=x2+2x的图象上,记an与an+1的等差中项为kn
(1)求数列{an}的通项公式;
(2)若 ,求数列{bn}的前n项和Tn
(3)设集合 ,等差数列{cn}的任意一项cn∈A∩B,其中c1是A∩B中的最小数,且110<c10<115,求{cn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )

A. 1盏 B. 3盏 C. 5盏 D. 9盏

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若,求曲线在点处的切线方程;

(Ⅱ)求函数的单调区间;

(Ⅲ)设函数.若对于任意,都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点,点是椭圆上在第一象限的点,直线轴于点,直线轴于点.

(Ⅰ)求椭圆的标准方程和离心率;

(Ⅱ)是否存在点,使得直线 与直线平行?若存在,求出点的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线 t为参数), 为参数).
(1)化 的方程为普通方程;
(2)若 上的点对应的参数为 ,Q为 上的动点,求PQ中点M到直线(t为参数)距离的最小值.

查看答案和解析>>

同步练习册答案