精英家教网 > 高中数学 > 题目详情

(本小题满分12分)已知函数
(Ⅰ)若函数上为增函数,求正实数的取值范围;
(Ⅱ)设,求证:

(Ⅰ)(Ⅱ)见解析

解析试题分析:(1)由已知,依题意:恒成立,即:恒成立,亦即恒成立,

(2) .取
一方面,由(1)知上是增函数,
所以,所以,即
另一方面,设函数
所以上是增函数,又
时,,所以,即
综上,
考点:利用导数判断函数单调性,构造函数证明不等式
点评:构造新函数来证明不等式是难点,学生不易掌握

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
设函数(为自然对数的底数),).
(1)证明:
(2)当时,比较的大小,并说明理由;
(3)证明:).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数=为自然对数的底数),,记
(1)的导函数,判断函数的单调性,并加以证明;
(2)若函数=0有两个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知函数.
(1)若曲线在点处的切线与直线垂直,求函数的单调区间;
(2)若对于都有成立,试求的取值范围;
(3)记.当时,函数在区间上有两个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)设函数..
(Ⅰ)时,求的单调区间;
(Ⅱ)当时,设的最小值为,若恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

本小题满分12分)设函数f(x)= ,其中
(1)求f(x)的单调区间;(2)讨论f(x)的极值    

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分16分)
已知函数
(1)若x=2是函数f(x)的极值点,求实数a的值.
(2)若函数上是增函数,求实数的取值范围;
(3)若函数上的最小值为3,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
设函数时取得极值.
(I)求的值;
(II)若对于任意的,都有成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知函数=.
(1)求函数在区间上的值域;
(2)是否存在实数,对任意给定的,在区间上都存在两个不同的,使得成立.若存在,求出的取值范围;若不存在,请说明理由.
(3)给出如下定义:对于函数图象上任意不同的两点,如果对于函数图象上的点(其中总能使得成立,则称函数具备性质“”,试判断函数是不是具备性质“”,并说明理由.

查看答案和解析>>

同步练习册答案