【题目】某公司甲、乙两个班组分别试生产同一种规格的产品,已知此种产品的质量指标检测分数不小于70时,该产品为合格品,否则为次品,现随机抽取两个班组生产的此种产品各100件进行检测,其结果如下表:
质量指标检测分数 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
甲班组生产的产品件数 | 7 | 18 | 40 | 29 | 6 |
乙班组生产的产品件数 | 8 | 12 | 40 | 32 | 8 |
(1)根据表中数据,估计甲、乙两个班组生产该种产品各自的不合格率;
(2)根据以上数据,完成下面的2×2列联表,并判断是否有95%的把握认为该种产品的质量与生产产品的班组有关?
甲班组 | 乙班组 | 合计 | |
合格品 | |||
次品 | |||
合计 |
(3)若按合格与不合格比例,从甲班组生产的产品中抽取4件产品,从乙班组生产的产品中抽取5件产品,记事件A:从上面4件甲班组生产的产品中随机抽取2件,且都是合格品;事件B:从上面5件乙班组生产的产品中随机抽取2件,一件是合格品,一件是次品,试估计这两个事件哪一种情况发生的可能性大.
附:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
【答案】(1)甲:,乙:;(2)没有95%的把握认为此种产品的产品质量与生产产品的班组有关;(3)事件A发生的可能性大一些
【解析】
(1)直接计算甲班组和乙班组产品的不合格率;(2)利用独立性检验求得没有95%的把握认为此种产品的产品质量与生产产品的班组有关;(3)利用古典概型的概率公式求出P(A)和P(B),再比较大小即得解.
(1)根据表中数据,甲班组生产该产品的不合格率为,
乙班组生产该产品的不合格率为;
(2)列联表如下:
甲班组 | 乙班组 | 合计 | |
合格品 | 75 | 80 | 155 |
次品 | 25 | 20 | 45 |
合计 | 100 | 100 | 200 |
.
所以,没有95%的把握认为此种产品的产品质量与生产产品的班组有关.
(3)由题意,若按合格与不合格的比例,则抽取了4件甲班组产品,5件乙班组产品,其中甲、乙班组抽取的产品中均含有1件次品,设这4件甲班组产品分别为A1,A2,A3,D,其中A1,A2,A3代表合格品,D代表次品,从中随机抽取2件,则所有可能的情况为A1A2,A1A3,A1D,A2A3,A2D,A3D共6种,A事件包含3种,故;设这5件乙班组产品分别为B1,B2,B3,B4,E,其中B1,B2,B3,B4代表合格品,E代表次品,从中随机抽取2件,则所有可能的情况为B1B2,B1B3,B1B4,B1E,B2B3,B2B4,B2E,B3B4,B3E,B4E共10种,B事件包含4种,故;
因为P(A)>P(B),所以,事件A发生的可能性大一些.
科目:高中数学 来源: 题型:
【题目】设函数,下述四个结论:
①是偶函数;
②的最小正周期为;
③的最小值为0;
④在上有3个零点
其中所有正确结论的编号是( )
A.①②B.①②③C.①③④D.②③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知为抛物线上一点,斜率分别为,的直线PA,PB分别交抛物线于点A,B(不与点P重合).
(1)证明:直线AB的斜率为定值;
(2)若△ABP的内切圆半径为.
(i)求△ABP的周长(用k表示);
(ii)求直线AB的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在四棱锥中, 平面是的中点, 是上的点且为边上的高.
(1)证明: 平面;
(2)若,求三棱锥的体积;
(3)在线段上是否存在这样一点,使得平面?若存在,说出点的位置.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为坐标原点,椭圆的右焦点为,离心率为,过点的直线与相交于两点,点为线段的中点.
(1)当的倾斜角为时,求直线的方程;
(2)试探究在轴上是否存在定点,使得为定值?若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com