精英家教网 > 高中数学 > 题目详情
19.函数y=sinx+ex的图象上一点(0,1)处的切线的斜率为(  )
A.1B.2C.3D.0

分析 求出原函数的导函数,得到函数y=ex在x=1处的导数,即函数y=ex在x=1处的切线的斜率.

解答 解:由y=sinx+ex,得y′=cosx+ex
∴y′|x=0=cos0+e0=2.
即函数y=sinx+ex的图象上一点(0,1)处的切线的斜率为2.
故选:B.

点评 本题考查利用导数研究曲线上某点处的切线方程,过曲线上某点处的切线的斜率,就是函数在该点处的导数值,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{1+lnx}{x}$.
(Ⅰ)求函数的单调区间;
(Ⅱ)如果当x≥1时,不等式f(x)≥$\frac{k}{x+1}$恒成立,求实数k的取值范围;
(Ⅲ)求证:$\sum_{k=1}^n{[lnk+ln(k+1)]}>\frac{{{n^2}-n-1}}{n+1}(n∈{N^*})$.(说明:$\sum_{i=1}^n{x_i}$=x1+x2+…+xn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知a∈R,若关于x的方程x2+x-|a+$\frac{1}{4}$|+a2=0没有实根,则a的取值范围是(  )
A.(-∞,-1)∪($\frac{1+\sqrt{3}}{2}$,+∞)B.(-∞,$\frac{-1+\sqrt{3}}{2}$)∪(1,+∞)
C.(-∞,-1)∪(1,+∞)D.(-∞,$\frac{-1-\sqrt{3}}{2}$)∪($\frac{1+\sqrt{3}}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.直线x+2y-5=0关于直线x=3对称的直线方程是x-2y-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}的前n项和为Sn,且Sn=2n+1-2,数列{bn}满足b1=1,bn+1=bn+2,n∈N*
(1)求数列{an}、{bn}的通项公式;
(2)若cn=anbn,n∈N*,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数y=tanx在区间($\frac{π}{2}$,m)上是增函数,则实数m的取值范围是( $\frac{π}{2}$,$\frac{3π}{2}$ ).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{1}{{2}^{x}+1}$,写出求f(-4)+f(-3)+f(-2)+…+f(4)的一个算法,并画出程序框图.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在数列{an}中,an=2(n-2)×3n-1,则数列{an}的前n项和Tn等于(  )
A.$\frac{(2n-1){3}^{n}+5}{2}$B.$\frac{(2n-3){3}^{n}+5}{2}$C.$\frac{(2n-5){3}^{n}+5}{2}$D.$\frac{(2n+5){3}^{n}+5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图程序框图运行之后输出的W值为(  )
A.11B.22C.39D.41

查看答案和解析>>

同步练习册答案