精英家教网 > 高中数学 > 题目详情

【题目】如图,EA平面ABCDCEAEA2DCFEB的中点.

1)求证:DC平面ABC

2)求证:DF∥平面ABC.

【答案】1)证明见解析;(2)证明见解析;

【解析】

1)根据线面垂直的性质与判定定理即可证明;

2)取AB中点M,连结CMFM,证明四边形DCMF为平行四边形,由此根据线面平行的判定定理即可证明.

证明:(1)∵EA⊥平面ABCABAC平面ABC

EAABEAAC

DCEA

DCABDCAC

ABACAABAC平面ABC

DC⊥平面ABC

2)取AB中点M,连结CMFM

在△ABE中,FM分别为EBAB中点,

FMEA,且EA2FM

DCEAEA2DC

于是DCFM,且DCFM

∴四边形DCMF为平行四边形,

DFCMCM平面ABCDF平面ABC

DF∥平面ABC

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在数列{an}{bn}中,anbn+nbn=﹣an+1.

1)证明:数列{an+3bn}是等差数列.

2)求数列的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在极坐标系中曲线C的极坐标方程为

1)求曲线C与极轴所在直线围成图形的面积;

2)设曲线C与曲线ρsinθ1交于AB,求|AB|

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,左顶点为,且是椭圆上一点.

1)求椭圆的方程;

2)若直线与椭圆交于两点,直线别与轴交于点,求证:在轴上存在点,使得无论非零实数怎样变化,以 为直径的圆都必过点,并求出点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,DABC中,边BC的中点,KACABD的外接圆O的交点,EK平行于AB且与圆O交于E,若AD=DE,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知三棱锥PABC中,PA平面ABCABAC,且PAlABAC2,点D满足.

1)当,求二面角PBDC的余弦值;

2)若直线PC与平面PBD所成角的正弦值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)讨论时,的单调性、极值;

2)求证:在(1)的条件下,

3)是否存在实数a,使的最小值是3,如果存在,求出a的值;若不存在,

请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次比赛中,某队的六名队员均获得奖牌,共获得4枚金牌2枚银牌,在颁奖晚会上,这六名队员与1名领队排成一排合影,若两名银牌获得者需站在领队的同侧,则不同的排法共有______种.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆,点,点在圆上,.

1)求圆的方程;

2)直线与圆交于两点(点在轴上方),点是抛物线上的动点,点的外心,求线段长度的最大值,并求出当线段长度最大时,外接圆的标准方程.

查看答案和解析>>

同步练习册答案