精英家教网 > 高中数学 > 题目详情

【题目】

(1)证明:存在唯一实数,使得直线和曲线相切;

(2)若不等式有且只有两个整数解,求的范围.

【答案】(1)见解析;(2)

【解析】试题分析:1)求出函数的导数,设切点为(x0y0),得到+x0﹣2=0.设h(x)=ex+x﹣2,根据函数的单调性求出x0的值,判断结论即可;

2)根据a(x﹣)<1,令,根据函数的单调性求出的最小值,通过讨论a的范围,求出满足条件的a的范围即可.

试题解析:

(1)设切点为

相切,则

所以

,令 ,所以单增,

又因为 ,所以,存在唯一实数,使得,且

所以只存在唯一实数,使①②成立,即存在唯一实数使得相切.

(2)令,则,所以

,则,由(Ⅰ)可知, 上单减,在单增,且,故当时, ,当时,

时,因为要求整数解,所以时, ,所以有无穷多整数解,舍去;

时, ,又 ,所以两个整数解为0,1,即所以,即

时, ,因为 内大于或等于1,所以无整数解,舍去.

综上,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 )的离心率 ,直线 被以椭圆 的短轴为直径的圆截得的弦长为 .

(1)求椭圆 的方程;

(2)过点 的直线 交椭圆于 两个不同的点,且 ,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学为研究学生的身体素质与体育锻炼时间的关系,对该校200名高三学生平均每天体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟)

平均每天锻炼的时间/分钟

总人数

20

36

44

50

40

10

将学生日均体育锻炼时间在的学生评价为“锻炼达标”.

(1)请根据上述表格中的统计数据填写下面的列联表;

锻炼不达标

锻炼达标

合计

20

110

合计

并通过计算判断,是否能在犯错误的概率不超过0.025的前提下认为“锻炼达标”与性别有关?

(2)在“锻炼达标”的学生中,按男女用分层抽样方法抽出5人,进行体育锻炼体会交流,再从这5人中选出2人作重点发言,求作重点发言的2人中,至少1人是女生的概率.

参考公式:,其中.

临界值表

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)处取得极值,求的值;

(2),试讨论函数的单调性;

(3)时,若存在正实数满足,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(1)若时, 不单调,求的取值范围;

(2)设,若 时, 时, 有最小值,求最小值的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汉字听写大会不断创收视新高,为了避免“书写危机”,弘扬传统文化,某市大约10万名市民进行了汉字听写测试现从某社区居民中随机抽取50名市民的听写测试情况,发现被测试市民正确书写汉字的个数全部在160到184之间,将测试结果按如下方式分成六组:第1组,第2组,第6组,如图是按上述分组方法得到的频率分布直方图.

若电视台记者要从抽取的市民中选1人进行采访,求被采访人恰好在第2组或第6组的概率;

试估计该市市民正确书写汉字的个数的平均数与中位数;

已知第4组市民中有3名男性,组织方要从第4组中随机抽取2名市民组成弘扬传统文化宣传队,求至少有1名女性市民的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下问题最终结果用数字表示

(1)由0、1、2、3、4可以组成多少个无重复数字的五位偶数?

(2)由1、2、3、4、5组成多少个无重复数字且2、3不相邻的五位数?

(3)由1、2、3、4、5组成多少个无重复数字且数字1,2,3必须按由大到小顺序排列的五位数?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知直线和圆是直线上一点,过点作圆的两条切线,切点分别为.

1)若,求点坐标;

2)若圆上存在点,使得,求点的横坐标的取值范围;

3)设线段的中点为轴的交点为,求线段长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列是以为公差的等差数列,数列的前项和为,满足 ,则不可能是(  )

A. -1 B. 0

C. 2 D. 3

查看答案和解析>>

同步练习册答案