精英家教网 > 高中数学 > 题目详情
设连续掷两次骰子得到的点数分别为m、n,则直线y=与圆(x-3)2+y2=1相交的概率是(    )

A.                 B.                  C.                D.

答案:C

解析:圆心(3,0)到直线mx-ny=0的距离为

,

∴当m=1时,n=3,4,5,6,

当m=2时,n=6,

满足条件的只有5种情形.

故所求概率为P=.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设连续掷两次骰子得到的点数分别为m、n,则直线y=
m
n
x
与圆(x-3)2+y2=1相交的概率是(  )
A、
5
18
B、
5
9
C、
5
36
D、
5
72

查看答案和解析>>

科目:高中数学 来源: 题型:

设连续掷两次骰子得到的点数分别为m、n,令平面向量
a
=(m,n)
b
=(1,-3)

(Ⅰ)求使得事件“
a
b
”发生的概率;
(Ⅱ)求使得事件“|
a
|≤|
b
|
”发生的概率;
(Ⅲ)使得事件“直线y=
m
n
x
与圆(x-3)2+y2=1相交”发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•虹口区三模)设连续掷两次骰子得到的点数分别为m,n(m,n=1,2,…,6),则直线y=
m
n
x
与圆(x-3)2+y2=1相交的概率是
5
36
5
36

查看答案和解析>>

科目:高中数学 来源: 题型:

设连续掷两次骰子得到的点数分别为,则直线与圆相交的概率是(    )

       A.  B.      C.            D.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年度新课标高三上学期数学单元测试11-理科-计算原理、随机变量及其分布、统计案例 题型:选择题

 设连续掷两次骰子得到的点数分别为,则直线与圆相交的概率是             (    )

    A. B.       C.          D.

 

查看答案和解析>>

同步练习册答案