精英家教网 > 高中数学 > 题目详情
14.如果两平行直线y=2x-b与y=2x+5之间距离为$\sqrt{5}$,那么b=0或-10.

分析 直接利用平行线之间的距离公式,列出方程求解即可.

解答 解:两平行直线y=2x-b与y=2x+5之间距离为$\sqrt{5}$,
可得:$\frac{|5+b|}{\sqrt{{2}^{2}+1}}$=$\sqrt{5}$,
解得b=0或-10.
故答案为:0或-10.

点评 本题考查平行线之间距离公式的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.求下列函数的反函数.
(1)y=$\frac{x-2}{x-1}$.
(2)y=$\sqrt{x}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在椭圆x2+4y2=16中,求通过点M(2,1)且被这点平分的弦所在的直线的方程和弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数y=Asin(ωx+φ)(ω>0)在一个周期内的图象如图所示,则ω的值是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{{9}^{x}}{{9}^{x}+3}$.
(1)求f(x)+f(1-x)的值;
(2)求f($\frac{1}{2015}$)+f($\frac{2}{2015}$)+f($\frac{3}{2015}$)+…+f($\frac{2014}{2015}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求经过点M(2,-1)且与圆:x2+y2-2x+10y-10=0同心的圆的方程,并求此圆过点M的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知y=f(x)是(0,+∞)上的可导函数,满足(x-1)[2f(x)+xf′(x)]>0(x≠1)恒成立,f(1)=2,若曲线f(x)在点(1,2)处的切线为y=g(x),且g(a)=2016,则a等于(  )
A.-500.5B.-501.5C.-502.5D.-503.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.将夏令营的500名学生分别编号为001,002,…,500,这500名学生分住在三个营区,从001到200在第一营区,从201到350在第二营区,从351到500在第三营区.若采用分层抽样的方法抽取一个容量50的样本,则三个营区被抽取的人数分别为(  )
A.20,15,15B.20,16,14C.12,14,16D.21,15,14

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若函数$f(x)=\left\{{\begin{array}{l}{(2a-1)x+a}&{(x≤1)}\\{{{log}_a}x}&{(x>1)}\end{array}}\right.$是R上的减函数,则实数a的取值范围是[$\frac{1}{3},\frac{1}{2}$).

查看答案和解析>>

同步练习册答案