精英家教网 > 高中数学 > 题目详情

【题目】某种药种植基地有两处种植区的药材需在下周一、周二两天内采摘完毕,基地员工一天可以完成一处种植区的采摘,由于下雨会影响药材的收益,若基地收益如下表所示:已知下周一和下周二无雨的概率相同且为,两天是否下雨互不影响,若两天都下雨的概率为

(1)求及基地的预期收益;

(2)若该基地额外聘请工人,可在周一当天完成全部采摘任务,若周一无雨时收益为万元,有雨时收益为万元,且额外聘请工人的成本为元,问该基地是否应该额外聘请工人,请说明理由.

【答案】(1) 基地的预期收益为9.16万元;(2)见解析.

【解析】试题分析:

(1)由于两天下雨是相互独立的,因此两天都下雨的概率是,由此可得该基地收益的可能取值为10,8, 5(单位:万元),分别计算要概率,然后列出概率分布列,计算出数学期望.(2)该基地额外聘请工人的预期收益绝对值计算易得,现第(1)小题,比较两个预期值可得.

试题解析:

(1) 两天都下雨的概率为,解得.

该基地收益的可能取值为10,8, 5。(单位:万元)则:

所以该基地收益的分布列为:

10

8

5

0.64

0.32

0.04

则该基地的预期收益(万元)

所以,基地的预期收益为9.16万元

⑵设基地额外聘请工人时的收益为万元,则其预期收益:

(万元)

此时,所以该基地应该外聘工人.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,左顶点为.

(1)求椭圆的方程;

(2)已知为坐标原点, 是椭圆上的两点,连接的直线平行轴于点,证明: 成等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆 过椭圆 ()的短轴端点, 分别是圆与椭圆上任意两点且线段长度的最大值为3.

(Ⅰ)求椭圆的方程;

(Ⅱ)过点作圆的一条切线交椭圆 两点,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某项科研活动共进行了5次试验,其数据如下表所示:

特征量

第1次

第2次

第3次

第4次

第5次

555

559

551

563

552

601

605

597

599

598

(1)从5次特征量的试验数据中随机地抽取两个数据,求至少有一个大于600的概率;

(2)求特征量关于的线性回归方程;并预测当特征量为570时特征量的值.

(附:回归直线的斜率和截距的最小二乘法估计公式分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求与直线3x-4y+7=0平行,且在两坐标轴上截距之和为1的直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某手机生产企业为了解消费者对某款手机功能的认同情况,通过销售部随机抽取50名购买该款手机的消费者,并发出问卷调查(满分50分),该问卷只有30份给予回复,这30份的评分如下:

(Ⅰ)完成下面的茎叶图,并求16名男消费者评分的中位数与14名女消费者评分的平均值;

(Ⅱ)若大于40分为“满意”,否则为“不满意”,完成上面的列联表,并判断是否有的把握认为消费者对该款手机的“满意度”与性别有关.

参考公式: ,其中

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正方体ABCDA1B1C1D1中,MN分别是A1B1B1C1的中点,问:

(1)AMCN是否是异面直线?说明理由;

(2)D1BCC1是否是异面直线?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的展开式中第五项的系数与第三项的系数的比是10∶1.

(1)求展开式中各项系数的和;

(2)求展开式中含的项;

(3)求展开式中系数最大的项和二项式系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中, 上的点, 平面

(Ⅰ)求证: 平面

(Ⅱ)若,且,求二面角的余弦值.

查看答案和解析>>

同步练习册答案