精英家教网 > 高中数学 > 题目详情
汽车是碳排放量比较大的行业之一,某地规定,从2015年开始,将对二氧化碳排放量超过130g/km的轻型汽车进行惩罚性征税.检测单位对甲、乙两品牌轻型汽车各抽取5辆进行二氧化碳排放量检测,记录如下(单位:g/km).
80110120140150
100120x100160
经测算得乙品牌轻型汽车二氧化碳排放量的平均值为
.
x
=120g/km.
(1)求表中x的值,并比较甲、乙两品牌轻型汽车二氧化碳排放量的稳定性;
(2)从被检测的5辆甲品牌轻型汽车中任取2辆,则至少有一辆二氧化碳排放量超过130g/km的概率是多少?
考点:概率的应用
专题:计算题,应用题,概率与统计
分析:(1)由平均数
.
x
=
100+120+x+100+160
5
=120求x,再求方差比较可得稳定性;
(2)符合古典概型,利用古典概型的概率公式求解.
解答: 解:(1)由
.
x
=
100+120+x+100+160
5
=120得,
x=120;
.
x
=
80+110+120+140+150
5
=120;
S2=
1
5
[(80-120)2+(110-120)2+(120-120)2+(140-120)2+(150-120)2]=600;
S2=
1
5
[(100-120)2+(120-120)2+(120-120)2+(100-120)2+(160-120)2]=480;
因为S2>S2
故乙品牌轻型汽车二氧化碳排放量的稳定性更好;
(2)从被检测的5辆甲品牌轻型汽车中任取2辆,共有
C
2
5
=10种情况,
至少有一辆二氧化碳排放量超过130g/km的情况有
C
1
2
×
C
1
3
+1=7种,
故至少有一辆二氧化碳排放量超过130g/km的概率是
7
10
点评:本题考查了数据的分析与应用,同时考查了古典概型在实际问题中的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某班某次数学考试成绩好,中,差的学生人数之比为3:5:2,现在用分层抽样方法从中抽取容量为20的样本,则应从成绩好的学生中抽取
 
名学生.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα=-
3
5
,则sin2α=(  )
A、
15
17
B、-
15
17
C、-
8
17
D、
8
17

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:
(1)cos(90°+α)+sin(180°-α)-sin(180°+α)-sin(-α).
(2)
sin(π-α)
tan(π+α)
cot(
π
2
-α)
tan(
π
2
+α)
cos(-α)
sin(2π-α)

查看答案和解析>>

科目:高中数学 来源: 题型:

某商场为经营一批每件进价是10元的小商品,对该商品进行为期5天的市场试销.下表是市场试销中获得的数据.
销售单价/元6550453515
日销售量/件156075105165
根据表中的数据回答下列问题:
(1)试销期间,这个商场试销该商品的平均日销售利润是多少?
(2)试建立一个恰当的函数模型,使它能较好地反映日销售量y(件)与销售单价x(元)之间的函数关系,并写出这个函数模型的解析式;
(3)如果在今后的销售中,该商品的日销售量与销售单价仍然满足(2)中的函数关系,试确定该商品的销售单价,使得商场销售该商品能获得最大日销售利润,并求出这个最大的日销售利润.
(提示:必要时可利用右边给出的坐标纸进行数据分析)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的焦距为4,且经过点(-3,2
6
).
(Ⅰ)求双曲线C的方程和其渐近线方程;
(Ⅱ)若直线l:y=kx+2与双曲线C有且只有一个公共点,求所有满足条件的k的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:

证明抛物线没有渐近线.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列结论:
动点M(x,y)分别到两定点(-3,0)、(3,0)连线的斜率之乘积为
16
9
,设M(x,y)的轨迹为曲线C,F1、F2分别为曲线C的左、右焦点,则下列命题中:
(1)曲线C的焦点坐标为F1(-5,0)、F2(5,0);
(2)若∠F1MF2=90°,则S F1MF2=32;
(3)当x<0时,△F1MF2的内切圆圆心在直线x=-3上;
(4)设A(6,1),则|MA|+|MF2|的最小值为2
2

其中正确命题的序号是:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=
lnx
x-1
+1,当x∈(1,+∞)时,求f(x)的值域.

查看答案和解析>>

同步练习册答案