精英家教网 > 高中数学 > 题目详情

如图:在四棱锥中,底面是正方形,,点上,且.

(1)求证:平面;   
(2)求二面角的余弦值;
(3)证明:在线段上存在点,使∥平面,并求的长.

(1)证明见解析;(2);(3)证明见解析.

解析试题分析:(1)要证线面垂直,就是要证与平面内的两条相交直线垂直,如,虽然题中没有给出多少垂直关系,但有线段的长度,实际上在中应用勾股定理就能证明,同理可证,于是可得平面;(2)由于在(1)已经证明了两两垂直,因此解决下面的问题我们可以通过建立空间直角坐标系,利用空间向量法解题.以为原点,分别为轴建立空间直角坐标系,写出相应点的坐标,,这样我们只要求出平面和平面的法向量,利用法向量的夹角与二面角相等可互补可得所求二面角大小;(3)线段上的点的坐标可写为,这样若有平面,即与(2)中所求平面的法向量垂直,由此可出,若,说明在线段上存在符合题意的点,否则就是不存在.
试题解析:(1)证明:
,同理      2分
平面.     4分
(2)以为原点,分别为轴建立空间直角坐标系,
       6分
平面的法向量为
设平面的法向量为                 7分
,由,取 ,  8分
设二面角的平面角为
二面角的余弦值为.     10分
(3)假设存在点,使∥平面

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,底面为平行四边形,是正三角形,平面平面
(1)求证:
(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直四棱柱中,,E为CD上一点,

(1)证明:BE⊥平面
(2)求点到平面的距离。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知四棱锥,底面为菱形,
平面分别是的中点.
(1)证明:
(2)若上的动点,与平面所成最大角的正切值为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱柱是直棱柱,.点分别为的中点.

(1)求证:平面;
(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在五面体ABCDEF中,四边形ABCD是矩形,DE⊥平面ABCD.

(1)求证:AB∥EF;
(2)求证:平面BCF⊥平面CDEF.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,正方体中,已知为棱上的动点.

(1)求证:
(2)当为棱的中点时,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图在四棱锥中,底面是菱形,,平面平面的中点,是棱上一点,且.

(1)求证:平面
(2)证明:∥平面
(3)求二面角的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,几何体EABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.

(1)求证:BE=DE;
(2)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.

查看答案和解析>>

同步练习册答案