精英家教网 > 高中数学 > 题目详情
四个命题:
①若0<x<2,则0<x<3;
②“全等三角形的面积相等”的逆命题;
③“若ab=0,则a=0”的否命题;
④“若a<b<0,则a2>b2”的逆否命题.
其中正确的是
①③④
①③④
(填上你认为正确的所有命题的序号).
分析:分别根据四种命题之间的关系进行判断.
解答:解:①若0<x<2,则0<x<3;正确.
②“全等三角形的面积相等”的逆命题;为面积相同的三角形是全等三角形,错误.
③“若ab=0,则a=0”的否命题是:若ab≠0,则a≠0,正确.
④若a<b<0,则a2>b2”正确,所以命题的逆否命题也正确.
故答案为:①③④.
点评:本题主要考查四种命题的真假判断,要求熟练掌握四种命题之间的关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出定义:若m-
1
2
<x≤m+
1
2
(其中m为整数),则m叫做离实数x最近的整数,记作{x}=m.在此基础上给出下列关于函数f(x)=|x-{x}|的四个命题:
①函数y=f(x)的定义域为R,值域为[0,
1
2
];
②函数y=f(x)的图象关于直线x=
k
2
(k∈Z)对称;
③函数y=f(x)是周期函数,最小正周期为1;
④函数y=f(x)在[-
1
2
1
2
]上是增函数.
其中正确的命题的序号
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出定义:若m-
1
2
<x≤m+
1
2
(其中m为整数),则m叫做离实数x最近的整数,记作{x}=m.在此基础上给出下列关于函数f(x)=|x-{x}|的四个命题:
①函数y=f(x)的定义域为R,值域为[0,
1
2
]

②函数y=f(x)的图象关于直线x=
k
2
(k∈Z)对称;
③函数y=f(x)是周期函数,最小正周期为1;
④函数y=f(x)在[-
1
2
1
2
]
上是增函数.
其中正确的命题的序号是(  )
A、①B、②③C、①②③D、①④

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个命题:①在区间[0,1]内任取两个实数x,y,则事件“x2+y2>1恒成立”的概率是1-
π
4
; ②从200个元素中抽取20个样本,若采用系统抽样的方法则应分为10组,每组抽取2个; ③函数f(x)关于(3,0)点对称,满足f(6+x)=f(6-x),且当x∈[0,3]时函数为增函数,则f(x)在[6,9]上为减函数; ④满足A=30°,BC=1,AB=
3
的△ABC有两解.其中正确命题的个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

给出定义:若m-
1
2
<x≤m+
1
2
(其中m为整数),则m叫做离实数x最近的整数,记作{x}=m.在此基础上给出下列关于函数f(x)=|x-{x}|的四个命题:
①函数y=f(x)的定义域为R,值域为[0,
1
2
]

②函数y=f(x)的图象关于直线x=
k
2
(k∈Z)
对称;
③函数y=f(x)是偶函数;
④函数y=f(x)在[-
1
2
1
2
]
上是增函数. 其中正确的命题的序号是
①②③
①②③

查看答案和解析>>

科目:高中数学 来源: 题型:022

(2007郑州模拟)对于定义在R上的函数y=f(x),有下述四个命题:

A.若y=f(x)是奇函数,则y=f(x1)的图象关于点A(10)对称;

B.若对于任意xR,有f(x1)=f(x1),则函数y=f(x)的图象关于直线x=1对称;

C.若函数y=f(x1)的图象关于直线x=1对称,则y=f(x)为偶函数;

D.函数y=f(1x)与函数y=f(1x)的图象关于直线x=1对称.

其中正确命题的代号为________(按照原顺序把你认为正确命题的代号都填上)

查看答案和解析>>

同步练习册答案