精英家教网 > 高中数学 > 题目详情

【题目】如图所示的几何体是由棱台 和棱锥拼接而成的组合体,其底面四边形是边长为 的菱形,且 平面

1)求证:平面 平面

2)求二面角的余弦值.

【答案】1)证明见解析;(2

【解析】试题分析:

1)要证明平面平面,由面面垂直的判定定理知,需在某个平面上找到某条直线垂直于另一个平面,通过观察分析,平面内直线平面.要证明平面,又转化为线面垂直问题, ⊥平面,菱形中, ,又平面 .

2建立空间直角坐标系,分别求出平面平面DFC的法向量,再求出两个法向量的夹角的余弦值,即可得二面角的余弦值.

试题解析:

1⊥平面

在菱形中,

平面

平面∴平面⊥平面

2)连接交于点,以为坐标原点,以轴,以 轴,如图建立空间直角坐标系.

,同理

,,

设平面的法向量

,则

设平面DFC的法向量

,则

设二面角

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知正项数列{an}的前n项和为Sn , 对任意n∈N* , 点(an , Sn)都在函数 的图象上.
(1)求数列{an}的首项a1和通项公式an
(2)若数列{bn}满足 ,求数列{bn}的前n项和Tn
(3)已知数列{cn}满足 .若对任意n∈N* , 存在 ,使得c1+c2+…+cn≤f(x)﹣a成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,设向量 ,其中的两个内角.

(1)若,求证: 为直角;

2)若,求证: 为锐角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若曲线在点处的切线方程为,求ab的值;

2)如果是函数的两个零点, 为函数的导数,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下:
(Ⅰ)在4月份任取一天,估计西安市在该天不下雨的概率;
(Ⅱ)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.

日期

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

天气

日期

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

天气

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)若 ,且函数 在区间 上单调递增,求实数a的范围;

2)若函数有两个极值点 且存在 满足 ,令函数 ,试判断 零点的个数并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设A={﹣4,2a﹣1,a2},B={a﹣1,1﹣a,9},已知A∩B={9},求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中, ,点边的中点,将沿折起,使平面平面,连接 ,得到如图所示的几何体.

(Ⅰ)求证: 平面

(Ⅱ)若 与其在平面内的正投影所成角的正切值为,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的顶点A(5,1),AB边上的中线CM所在的直线方程为2x﹣y﹣5=0,AC边上的高BH所在直线的方程为x﹣2y﹣5=0.
(1)求直线BC的方程;
(2)求直线BC关于CM的对称直线方程.

查看答案和解析>>

同步练习册答案