精英家教网 > 高中数学 > 题目详情
解不等式:|x+1|≥6.
考点:绝对值不等式的解法
专题:不等式的解法及应用
分析:由|x+1|≥6 可得x+1≥6或 x+1≤-6,由此求得不等式的解集.
解答: 解:由|x+1|≥6 可得x+1≥6或 x+1≤-6,求得x≥5 或x≤-7,
故不等式地解集为{x|x≥5 或x≤-7}.
点评:本题主要考查绝对值不等式的解法,体现了转化的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,长方体ABCD-A1B1C1D1中,BC=CC1=
1
2
CD,且E,F,G分别为棱BC,CD,A1B1的中点.
(1)求证:AG∥平面C1EF;
(2)求异面直线AG与C1E所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=6lnx+ax2-10ax+25a,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).
(1)求a的值;
(2)求函数f(x)的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正三棱柱ABC-A1B1C1的底面边长是2,侧棱长为4,M、N分别是A1B1,CC1中点,则AN与BM所成角的余弦值为(  )
A、
2
3
B、
6
4
C、
7
34
68
D、
5
34
68

查看答案和解析>>

科目:高中数学 来源: 题型:

正四棱锥的侧棱长为2
3
,侧棱与底面所成角为60°,则该四棱锥的高为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c为△ABC的内角A,B,C的对边,且b<a<c,满足
sinB+sinC
sinA
=
2-cosB-cosC
cosA
,函数f(x)=sinωx(ω>0)在区间[0,
π
3
]上单调递增,在区间[
π
3
π
2
]上单调递减.
(1)证明:b,a,c成等差数列;
(2)若f(
π
9
)=cosA,且a=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知AD,CE分别是△ABC的边BC,AB的中线,且
AD
=
a
CE
=
b
,则
AC
=
 
(用
a
b
表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在实数集R上奇函数f(x)的最小正周期为20,在区间(0,10)内方程f(x)=0有且仅有一个解x=3,则方程f(
x
4
+3)=0在[-100,400]上不同的解的个数为(  )
A、20B、25C、26D、27

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知a2+b2=2010c2,求证:
2sinAsinBcosC
sin2(A+B)
为定值.

查看答案和解析>>

同步练习册答案