精英家教网 > 高中数学 > 题目详情
给定函数①y=x
1
2
,②y=log
1
2
x
,③y=-|x+1|,④y=2-x-1,其中在区间[0,+∞)上单调递减的函数序号是(  )
A、②④B、②③C、③④D、①④
分析:根据对数函数,对数函数,幂函数及绝对值函数的单调性及定义域,对已知中的四个函数逐一进行分析,即可得到答案.
解答:解:函数①y=x
1
2
,在区间[0,+∞)上单调递增,故①不满足条件;
②函数y=log
1
2
x
,在x=0时无意义,故②不满足条件;
③函数y=-|x+1|在区间[0,+∞)上单调递减,故③满足条件;
④函数y=2-x-1在区间[0,+∞)上单调递减,故④满足条件;
故选C
点评:本题考查的知识点是函数单调性的判断与证明,其中熟练掌握基本初等函数的性质是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给定函数①y=x
1
2
,②y=log
1
2
(x+1)
,③y=|x-1|,④y=2x+1,其中在区间(0,1)上单调递减的函数序号是(  )
A、①②B、②③C、③④D、①④

查看答案和解析>>

科目:高中数学 来源: 题型:

给定函数①y=x
1
2
,②y=log
1
2
(x+1)
,③y=|x-1|,④y=2x+1,其中在区间(0,1)上单调递减的函数序号是
②③
②③

查看答案和解析>>

科目:高中数学 来源: 题型:

给定函数①y=x
1
2
②y=x-1y=log
1
4
x
④y=-x2+2x,其中在(0,+∞)上单调递减的函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

给定函数①y=x
1
2
;②y=log
1
2
(x+1);③y=2x-1;④y=x+
1
x
;其中在区间(0,1)上单调递减的函数的序号是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

给定函数①y=x
1
2
,②y=log
1
2
(x+1)
,③y=|x2-2x|,④y=x+
1
x
,其中在区间(0,1)上单调递减的函数序号是(  )

查看答案和解析>>

同步练习册答案